
R-Programming Lab Manual

Week 1:
1. a) Installing R and RStudio 
R is a programming language and software environment for statistical analysis, graphics 
representation and reporting. R was created by Ross Ihaka and Robert Gentleman at the University 
of Auckland, New Zealand, and is currently developed by the R Development Core Team. 
This programming language was named R, based on the first letter of first name of the two R 
authors (Robert Gentleman and Ross Ihaka)
R is often used for statistical computing and graphical presentation to analyze and visualize data.
Why Use R?
 It is a great resource for data analysis, data visualization, data science and machine learning
 It provides many statistical techniques (such as statistical tests, classification, clustering and 

data reduction)
 It is easy to draw graphs in R, like pie charts, histograms, box plot, scatter plot, etc++
 It works on different platforms (Windows, Mac, Linux)
 It is open-source and free
 It has a large community support
 It has many packages (libraries of functions) that can be used to solve different problems

To Install R and R Packages

1. Open an internet browser and go to www.r-project.org.
2. Click the "download R" link in the middle of the page under "Getting Started."
3. Select a CRAN location (a mirror site) and click the corresponding link.
4. Click on the "Download R for WINDOWS" link at the top of the page.
5. Click on the file containing the latest version of R under "Files."
6. Save the .pkg file, double-click it to open, and follow the installation instructions.
7. Now that R is installed, you need to download and install RStudio.

To Install RStudio

1. Go to www.rstudio.com and click on the "Download RStudio" button.
2. Click on "Download RStudio Desktop."
3. Click on the version recommended for your system, or the latest Mac version, save the .dmg 

file on your computer, double-click it to open, and then drag and drop it to your applications 
folder.

1.b) Basic functionality of R, variable, data types in R

If you type 5 + 5, and press enter, you will see that R outputs 10.
Example
5 + 5
Output:
[1] 10

R Syntax
Syntax

http://www.r-project.org/
http://www.rstudio.com/


To output text in R, use single or double quotes:
Example
"Hello World!"
To output numbers, just type the number (without quotes):
Example
5
10
25
To do simple calculations, add numbers together:
Example
5 + 5
R Print
Print
Unlike many other programming languages, you can output code in R without using a print 
function:
Example
"Hello World!"
However, R does have a print() function available if you want to use it. This might be useful if you 
are familiar with other programming languages, such as Python, which often uses 
the print() function to output code.
Example
print("Hello World!")
And there are times you must use the print() function to output code, for example when working 
with for loops (which you will learn more about in a later chapter):
Example
for (x in 1:10) {
  print(x)
}

R Comments
Comments
Comments can be used to explain R code, and to make it more readable. It can also be used to 
prevent execution when testing alternative code.
Comments starts with a #. When executing the R-code, R will ignore anything that starts with #.
This example uses a comment before a line of code:
Example
# This is a comment
"Hello World!"
This example uses a comment at the end of a line of code:
Example
"Hello World!" # This is a comment
Multiline Comments
Unlike other programming languages, such as Java, there are no syntax in R for multiline 
comments. However, we can just insert a # for each line to create multiline comments:
Example
# This is a comment
# written in
# more than just one line
"Hello World!"

R Variables

Creating Variables in R
Variables are containers for storing data values.

https://www.w3schools.com/r/r_for_loop.asp
https://www.w3schools.com/java/java_comments.asp


R does not have a command for declaring a variable. A variable is created the moment you first 
assign a value to it. To assign a value to a variable, use the <- sign. To output (or print) the variable 
value, just type the variable name:
Example
name <- "John"
age <- 40
name   # output "John"
age    # output 40
From the example above, name and age are variables, while "John" and 40 are values.
In other programming language, it is common to use = as an assignment operator. In R, we can use 
both = and <- as assignment operators.
However, <- is preferred in most cases because the = operator can be forbidden in some context in 
R.
Print / Output Variables
Compared to many other programming languages, you do not have to use a function to print/output 
variables in R. You can just type the name of the variable:
Example
name <- "John Doe"
name # auto-print the value of the name variable
However, R does have a print() function available if you want to use it. This might be useful if you 
are familiar with other programming languages, such as Python, which often use a print() function 
to output variables.
Example
name <- "John Doe"
print(name) # print the value of the name variable
And there are times you must use the print() function to output code, for example when working 
with for loops (which you will learn more about in a later chapter):
Example
for (x in 1:10) {
  print(x)
}
Output:
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6
[1] 7
[1] 8
[1] 9
[1] 10

Multiple Variables
R allows you to assign the same value to multiple variables in one line:
Example
# Assign the same value to multiple variables in one line
var1 <- var2 <- var3 <- "Orange"
# Print variable values
var1
var2
var3
Variable Names
A variable can have a short name (like x and y) or a more descriptive name (age, carname, 
total_volume). 



Rules for R variables are:
 A variable name must start with a letter and can be a combination of letters, digits, 

period(.)and underscore(_). If it starts with period(.), it cannot be followed by a digit.
 A variable name cannot start with a number or underscore (_)
 Variable names are case-sensitive (age, Age and AGE are three different variables)
 Reserved words cannot be used as variables (TRUE, FALSE, NULL, if...)

# Legal variable names:
myvar<- "John"
my_var<- "John"
myVar <- "John"
MYVAR <- "John"
myvar2 <- "John"
.myvar<- "John"

# Illegal variable names:
2myvar <- "John"
my-var <- "John"
my var <- "John"
_my_var<- "John"
my_v@ar<- "John"
TRUE <- "John"
Remember that variable names are case-sensitive!
Data Types
In programming, data type is an important concept.
Variables can store data of different types, and different types can do different things.
In R, variables do not need to be declared with any particular type, and can even change type after 
they have been set:
Example
my_var<- 30 # my_var is type of numeric
my_var
Output:
[1] 30
my_var<- "Sally"   # my_var is now of type character (aka string)
my_var
Output:
[1] "Sally"

R has a variety of data types and object classes. 
Basic Data Types
Basic data types in R can be divided into the following types:
 numeric - (10.5, 55, 787)
 integer - (1L, 55L, 100L, where the letter "L" declares this as an integer)
 complex - (9 + 3i, where "i" is the imaginary part)
 character (a.k.a. string) - ("k", "R is exciting", "FALSE", "11.5")
 logical (a.k.a. boolean) - (TRUE or FALSE)

Use the class() function to check the data type of a variable:
Example
# numeric
x <- 10.5
class(x)

Output:
[1] "numeric"



# integer
x <- 1000L
class(x)
Output:
[1] "integer"

# complex
x <- 9i + 3
class(x)
Output:
[1] "complex"

# character/string
x <- "R is exciting"
class(x)
Output:
[1] "Character"

# logical/boolean
x <- TRUE
class(x)
Output:
[1] ”logical”

R Numbers
Numbers
There are three number types in R:
 numeric
 integer
 complex

Variables of number types are created when you assign a value to them:
Example
x <- 10.5   # numeric
y <- 10L    # integer
z <- 1i     # complex
Output:
 > x
[1] 10.5
> y
[1] 10
> z
[1] 0+1i

Numeric
A numeric data type is the most common type in R, and contains any number with or without a 
decimal, like: 10.5, 55, 787:
Example
x <- 10.5
y <- 55
# Print values of x and y
x
y

Output:
> x



[1] 10.5
> y
[1] 55
# Print the class name of x and y
class(x)
class(y)
Output:
> class(x)
[1] "numeric"
> class(y)
[1] "numeric"

Integer
Integers are numeric data without decimals. This is used when you are certain that you will never 
create a variable that should contain decimals. To create an integer variable, you must use the 
letter L after the integer value:
Example
x <- 1000L
y <- 55L
# Print values of x and y
x
y
Output:
> x
[1] 1000
> y
[1] 55
# Print the class name of x and y
class(x)
class(y)
Output:
> class(x)
[1] "integer"
> class(y)
[1] "integer"

Complex
A complex number is written with an "i" as the imaginary part:
Example
x <- 3+5i
y <- 5i
# Print values of x and y
x
y
Output:
> x
[1] 3+5i
> y
[1] 0+5i

# Print the class name of x and y
class(x)
class(y)
Output:



>class(x)
[1] "complex"
> class(y)
[1] "complex"

Type Conversion
You can convert from one type to another with the following functions:
 as.numeric()
 as.integer()
 as.complex()

Example
x <- 1L # integer
y <- 2 # numeric
# convert from integer to numeric:
a <- as.numeric(x)
# convert from numeric to integer:
b <- as.integer(y)
# print values of x and y
x
y
# print the class name of a and b
class(a)
class(b)
Output:
print values of x and y
> x
[1] 1
> y
[1] 2
 # print the class name of a and b
> class(a)
[1] "numeric"
> class(b)
[1] "integer"

VIVA QUESTIONS
1. R runs on the ____________ operating system.
    a) Linux        b) Windows           
    c) Ubuntu           d) Any operating system



     Ans: D
2. The primary source code copyright for R is held by the ___________
a) R Foundation   b) S Foundation   
c) R and S foundation     d) C Foundation
Explanation: The copyright for the primary source code for R is held by the R Foundation. The S foundation could not 
have R primary source code. R is a free software environment for statistical computing and graphics.
3. R is published under the __________ General Public License version.
a) A    b) B
c) C d) GNU
Explanation: R language is published under the GNU General Public License version. It includes compilers for C, 
C++, Objective-C and a host of other languages. The following licenses are in use for R or associated software such as 
packages.
4. You can download “base” R system from _________
a) A
b) B
c) CRAN
d) D
Explanation: You can download from CRAN (Comprehensive R Archive Network). The Base R can be found in 
CRAN. The base R can be found in R studio. The base R system will be found in R studio.

5. There are more than ________ packages on CRAN that have been developed by users and programmers 
around the world.
a) 40
b) 400
c) 4000
d) 40000
Explanation: There are more than 4000 packages on CRAN. A package bundles together code, data, documentation, 
and tests, and is easy to share with others. As of January 2015, there were over 4000 packages available on the 
Comprehensive R Archive Network, or CRAN, the public clearing house for R packages.
6. Which of the following command is used to print an object “x” in R?
a) printf(x)
b) print(x)
c) printx
d) print[x]
Explanation: print(x) command is used to print. Print(x) is the basic syntax for R. We can directly print the variable 
without print function also. The functions in R are helpful to the user to simplify the problem.
7. Finally, in _________ R version 1.0.0 was released to the public.
a) 2000
b) 2005
c) 2010
d) 2012
Explanation: Source code for the entire R system is accessible to anyone who wanted to tinker with it.
8. R functionality is divided into a number of ________
a) Packages
b) Functions
c) Domains
d) Classes
Explanation: CRAN also hosts many add-on packages that can be used to extend the functionality of R.
9. Which of the following is used for Statistical analysis in R language?
a) RStudio       b) Studio      c) Heck   d) KStudio
Explanation: RStudio is a web application framework for R.
10. What will be the output of the following R program?
r<-0:10
r[2]
a) 0 b) 1 c) 2 d) 3
Explanation: 1 is the output of the above code as indexing in R starts from 1. The output can be viewed in the R 
console. R studio has both R terminal and the R console. Each output format is implemented as a function in R. You 
can customize the output by passing arguments to the function as sub-values of the output field.

Week 2:
a) Implement R script to show the usage of various operators available in R language. 
b) Implement R script to read person’s age from keyboard and display whether he is  
    eligible for voting or not. 



c) Implement R script to find biggest number between two numbers. 
d) Implement R script to check the given year is leap year or not.
2(a) Implement R script to show the usage of various operators available in R language.
R Script:
a=40
b=20
print("Arthimetic Operators")
print(paste("addition=",(a+b)))
print(paste("subtraction =",a-b))
print(paste("multiplication=",a*b))
print(paste("division of numbers",a/b))
print(paste("modulo of numbers",a%%b))
print(paste("Quotient of number",a%/%b))
print(paste("power of number=",a^b))
print("Relational Operators")
print(paste("Checks Greater:",a>b))
print(paste("Checks lessthan:",a<b))
print(paste("Checks equal to:",a==b))
print(paste("Checks Greater or equal to:",a>=b))
print(paste("Checks less than or equal to:",a<=b))
print(paste("Checks not equal or not:",a!=b))
print("Logical operators")
print(paste("And operation",a&b))
print(paste("OR operation",a|b))
print(paste("NOT operation of a",!a))
print(paste("NOT operation of b",!b))
print(paste("Logical And operation",a&&b))
print(paste("Logical OR operation",a||b))
print("Miscellaneous Operators")
print("Colon operator")
print(2:8)
Output:
[1] "Arthimetic Operators"
 [1] "addition= 60"
 [1] "subtraction = 20"
 [1] "multiplication= 800"
 [1] "division of numbers 2"
 [1] "modulo of numbers 0"
 [1] "Quotient of number 2"
 [1] "power of number= 1.099511627776e+32"
 [1] "Relational Operators"
 [1] "Checks Greater: TRUE"
 [1] "Checks lessthan: FALSE"
 [1] "Checks equal to: FALSE"
 [1] "Checks Greater or equal to: TRUE"
 [1] "Checks less than or equal to: FALSE"
 [1] "Checks not equal or not: TRUE"

 [1] "Logical operators"
 [1] "And operation TRUE"
 [1] "OR operation TRUE"
 [1] "NOT operation of a FALSE"



 [1] "NOT operation of b FALSE"
 [1] "Logical And operation TRUE"
 [1] "Logical OR operation TRUE"

 [1] "Miscellaneous Operators"
 [1] "Colon operator"
 [1] 2 3 4 5 6 7 8

2( b) Implement R script to read person‘s age from keyboard and display whether he is  
         eligible for voting or not. 

age = readline(prompt="Enter the Age: ")
age = as.integer(age)
if(age>=18){
  print(paste("Eligible to vote”, age))
}else{
  print(paste("Not Eligible to vote”, age))
}

Output:
Enter the Age: 21
[1] "Eligible to vote 21"
Enter the Age: 17
[1] "Not Eligible to vote 17"

2(c) Implement R script to find biggest number between two numbers. 

# To Implement R script to find biggest between two numbers
a = as.integer(readline(prompt = "Enter the Number 1: "))
b = as.integer(readline(prompt = "Enter the Number 2: "))
if(a>b)
{
  sprintf("a value %d is big", a)
}else
{
  sprintf(" value %d is big", b)
}

Output:
Enter the Number 1: 10
Enter the Number 2: 5
[1] "a value 10 is big"
2(d) Implement R script to check the given year is leap year or not.
ALGORITHM
STEP 1: prompting appropriate messages to the user
STEP 2: take user input using readline() into variables year
STEP 3: check if year is exactly divisible by 4,100,400 gives a remainder 
              of 0
STEP 4: if remainder is a non-zero print year is not a leap year. 
STEP 5: if remainder is zero print year is a leap year. 

# Program to check if the input year is a leap year or not
year = as.integer(readline(prompt ="Enter a year: "))
if((year %% 4) == 0) { 
  if((year %% 100) == 0) { 



    if((year %% 400) == 0) {
      print(paste(year," is a Leap Year"))
    } else {
      print(paste(year," is not a Leap Year"))
    }
    
    } else  {
      print(paste(year," is a Leap Year"))
    }
    } else  {
      print(paste(year," is  not a Leap Year"))
    }

# Program to check if the input year is a leap year or not
year = as.integer(readline(prompt ="Enter a year: "))
if((year %% 4) == 0 & (year %% 100) == 0 & (year %% 400) == 0 ) { 
        print(paste(year," is a Leap Year"))
    } else {
      print(paste(year," is not a Leap Year"))
    }
   
  Output:
Enter a year: 1900
[1] "1900 is not a leap year"
Enter a year: 2000
[1] "2000 is a leap year"

VIVA QUESTIONS
1. What will be the output of the following R program?
        y<-0:5
         vector(y)
         y[3]
a) Error in vector(y): invalid ‘mode’ argument
b) 1    c) 4 d) 3
Explanation: y is already vector; second line is an invalid argument. The third line will give us the output. When an R 
vector is printed you will notice that an index for the vector is printed in square brackets [] on the side.
2. In R language, a vector is defined that it can only contain objects of the ________
a) Same class     b) Different class    c) Similar class d) Any class
Explanation: A vector can only contain objects of the same class. A vector cannot have contain objects of the different 
class. Same class objects are used mostly. The most basic type of R object is a vector. Empty vectors can be created 
with the vector() function.
3. A list is represented as a vector but can contain objects of ___________
a) Same class b) Different class c) Similar class d) Any class
Explanation: A list can contain objects of different class. But a vector can only contain objects of the same class. A 
vector cannot have contain objects of the different class. Same class objects are used mostly.
4. How can we define ‘undefined value’ in R language?
a) Inf   b) Sup c) Und d) NaN
Explanation: NaN is used to define the “undefined” value in the R language. Undefined values also have some value 
in R. Missing values are denoted by NA or NaN for q undefined mathematical operations. A NaN value is also NA but 
the converse is not true.
5. What is NaN called?
a) Not a Number b) Not a Numeric
c) Number and Number d) Number a Numeric
Explanation: NaN is called Not a Number. It is the full form of NaN. Full forms can be viewed in R studio by typing 
help. A NaN value is also NA but the converse is not true. The value NaN represents an undefined value.

Week-3
a) Implement R Script to create a list.
b) Implement R Script to access elements in the list.
c) Implement R Script to merge two or more lists. 



    Implement R Script to perform matrix operation.

3(a) Implement R Script to create a list.
Lists are the R objects which contain elements of different types like − numbers, strings, vectors 
and another list inside it. A list can also contain a matrix or a function as its elements. List is 
created using list() function.
Creating a List
Following is an example to create a list containing strings, numbers, vectors and a logical values.
# Create a list containing strings, numbers, vectors and logical values 
list_data <- list("Red","Green",c(21,32,11), TRUE, 51.23, 119.1)
print(list_data)
Output:
print(list_data)
[[1]]
[1] "Red"

[[2]]
[1] "Green"

[[3]]
[1] 21 32 11

[[4]]
[1] TRUE

[[5]]
[1] 51.23

[[6]]
[1] 119.1
3(b) Implement R Script to access elements in the list.
Giving a name to list elements
There are only three steps to print the list data corresponding to the name:

1. Creating a list.
2. Assign a name to the list elements with the help of names() function.
3. Print the list data.

Example: 1
# Create a list containing a vector, a matrix and a list.
list_data <- list(c("Jan","Feb","Mar"), matrix(c(3,9,5,1,-2,8), nrow = 2),list("green",12.3))
# Give names to the elements in the list.
names(list_data) <- c("1st Quarter", "A_Matrix", "A Inner list")
# Show the list.
print(list_data)
Output:
print(list_data)
$`1st Quarter`
[1] "Jan" "Feb" "Mar"
$A_Matrix
     [,1] [,2] [,3]
[1,]    3    5   -2
[2,]    9    1    8

$`A Inner list`
$`A Inner list`[[1]]
[1] "green"



$`A Inner list`[[2]]
[1] 12.3

Accessing List Elements

 Elements of the list can be accessed by the index of the element in the list. In case of 
named lists it can also be accessed using the names.

Example:2

# Create a list containing a vector, a matrix and a list.
list_data <- list(c("Jan","Feb","Mar"), matrix(c(3,9,5,1,-2,8), nrow = 2), list("green",12.3))

# Give names to the elements in the list.
names(list_data) <- c("1st Quarter", "A_Matrix", "A Inner list")

# Access the first element of the list.
print(list_data[1])

# Access the thrid element. As it is also a list, all its elements will be printed.
print(list_data[3])

# Access the list element using the name of the element.
print(list_data$A_Matrix)

Output:
print(list_data[1])
$`1st Quarter`
[1] "Jan" "Feb" "Mar"
# Access the third element. As it is also a list, all its elements will be printed.
print(list_data[3])
$`A Inner list`
$`A Inner list`[[1]]
[1] "green"
$`A Inner list`[[2]]
[1] 12.3
# Access the list element using the name of the element.
  print(list_data$A_Matrix)
     [,1] [,2] [,3]
[1,]    3    5   -2
[2,]   9    1    8
3(c) Implement R Script to merge two or more lists. 
       Implement R Script to perform matrix operation.

Implement R Script to merge two or more lists.
Merging Lists

You can merge many lists into one list by placing all the lists inside one list() function.

# Create two lists.
list1 <- list(1,2,3)
list2 <- list("Sun","Mon","Tue")

# Merge the two lists.
merged.list <- c(list1,list2)



# Print the merged list.
print(merged.list)

Output:
print(merged.list)
[[1]]
[1] 1

[[2]]
[1] 2

[[3]]
[1] 3

[[4]]
[1] "Sun"

[[5]]
[1] "Mon"

[[6]]
[1] "Tue"

Implement R Script to perform matrix operation.
R Matrix
In R, a two-dimensional rectangular data set is known as a matrix. A matrix is created with the help 
of the vector input to the matrix function. On R matrices, we can perform addition, subtraction, 
multiplication, and division operation.
In the R matrix, elements are arranged in a fixed number of rows and columns. The matrix elements 
are the real numbers. 
A Matrix is created using the matrix() function.
Syntax
matrix(data, nrow, ncol, byrow, dimnames)
Following is the description of the parameters used −

 data is the input vector which becomes the data elements of the matrix.
 nrow is the number of rows to be created.
 ncol is the number of columns to be created.
 byrow is a logical clue. If TRUE then the input vector elements are arranged by row.
 dimname is the names assigned to the rows and columns.

Example
#Arranging elements sequentially by row.  
P <- matrix(c(5:16), nrow = 4, byrow = TRUE)  
print(P)  

# Arranging elements sequentially by column.  
Q <- matrix(c(3:14), nrow = 4, byrow = FALSE)  
print(Q)  

# Defining the column and row names.  
row_names = c("row1", "row2", "row3", "row4")  
col_names = c("col1", "col2", "col3")  

R <- matrix(c(3:14), nrow = 4, byrow = TRUE, dimnames = list(row_names, col_names))  
print(R)



Output:
print(P)  
     [,1] [,2] [,3]
[1,]    5    6    7
[2,]    8    9   10
[3,]   11   12   13
[4,]   14   15   16

print(Q)  
     [,1] [,2] [,3]
[1,]    3    7   11
[2,]    4    8   12
[3,]    5    9   13
[4,]    6   10   14

print(R) 
     col1 col2 col3
row1    3    4    5
row2    6    7    8
row3    9   10   11
row4   12   13   14
Accessing Elements of a Matrix
Elements of a matrix can be accessed by using the column and row index of the element.
# Define the column and row names.
rownames = c("row1", "row2", "row3", "row4")
colnames = c("col1", "col2", "col3")
# Create the matrix. Arranging elements sequentially by row.  
P <- matrix(c(3:14), nrow = 4, byrow = TRUE, dimnames = list(rownames, colnames))
print(P)
# Access the element at 3rd column and 1st row.
print(P[1,3])
# Access the element at 2nd column and 4th row.
print(P[4,2])
# Access only the 2nd row.
print(P[2,])
# Access only the 3rd column.
print(P[,3])

Output:
print(P)
     col1 col2 col3
row1    3    4    5
row2    6    7    8
row3    9   10   11
row4   12   13   14

print(P[1,3])
[1] 5
print(P[4,2])
[1] 13

print(P[2,])
col1 col2 col3 
   6    7    8 



print(P[,3])
row1 row2 row3 row4 
   5    8   11   14

Matrix operations
In R, we can perform the mathematical operations on a matrix such as addition, subtraction, 
multiplication, etc.
R <- matrix(c(5:16), nrow = 4,ncol=3)  
S <- matrix(c(1:12), nrow = 4,ncol=3)  

# Display two matrices R and S
print(R)
print(S)

#Addition  
sum<-R+S  
print(sum)  

#Subtraction  
sub<-R-S  
print(sub)  

#Multiplication  
mul<-R*S  
print(mul)  

#Division  
div<-R/S  
print(div)  

Output:
print(R)
     [,1] [,2] [,3]
[1,]    5    9   13
[2,]    6   10   14
[3,]    7   11   15
[4,]    8   12   16
 print(S)
     [,1] [,2] [,3]
[1,]    1    5    9
[2,]    2    6   10
[3,]    3    7   11
[4,]    4    8   12

sum<-R+S  
print(sum)  
     [,1] [,2] [,3]
[1,]    6   14   22
[2,]    8   16   24
[3,]   10   18   26
[4,]   12   20   28

sub<-R-S  
print(sub)  
     [,1] [,2] [,3]



[1,]    4    4    4
[2,]    4    4    4
[3,]    4    4    4
[4,]    4    4    4
mul<-R*S  
print(mul)  
     [,1] [,2] [,3]
[1,]    5   45  117
[2,]   12   60  140
[3,]   21   77  165
[4,]   32   96  192
div<-R/S  
print(div)  
         [,1]     [,2]     [,3]
[1,] 5.000000 1.800000 1.444444
[2,] 3.000000 1.666667 1.400000
[3,] 2.333333 1.571429 1.363636
[4,] 2.000000 1.500000 1.333333

VIVA QUESTIONS
1. What will be the output of the following R code?
    x <- c(3, 7, NA, 4, 7)
    y <- c(5, NA, 1, 2, 2)
    x + y
a) Symbol b) Missing Data c) 5 d) 15.5
Answer: b
Explanation: Missing data are a persistent and prevalent problem in many statistical analyses, especially those 
associated with the social sciences. R reserves the special symbol NA to represent missing data. Ordinary arithmetic 
with NA value gives NA’s (addition, subtraction, etc.) and applying a function to a vector that has a NA in it will 
usually give a NA.
2. What is the mode of ‘a’ in the following R code?
     a <- c(1,” a”, FALSE)
a) Numeric b) Character c) Integer d) Logical
Answer: b
Explanation: All three elements can be expressed as a character. Both paste() and cat() will printout text to the console 
by combining multiple character vectors together. The original data are formatted as character strings so we convert 
them to R’s Date format for easier manipulation.
3. What is the length of b?
b <- 2:7
a) 4 b) 5 c) 6 d) 0
Answer: c
Explanation: Length of b [1] 2 3 4 5 6 7 is 6. We can also create an empty list of a prespecified length with the vector() 
function. Data frames are represented as a special type of list where every element of the list has to have the same 
length.
4. What are the typeof(x) and mode(x) in the following R syntax?
     x<-1:3
a) Numeric, Integer b) Integer, Numeric
c) Integer, Integer d) Numeric, Numeric
Answer: b
Explanation: Here typeof() tells about the data type. They are an important type of object in R and are used in a variety 
of statistical modelling applications. You can determine an object’s type with the typeof function.
5. What is the function to set row names for a data frame?
a) row.names() b) colnames() c) col.names() d) column name cannot be set for a data frame
Answer: a
Explanation: row.names() is the function to set row names for a data frame. Data frames have a special attribute called 
row.names, which indicate information about each row of the data frame.

Week-4
Implement R script to perform following operations:
a) Various operations on vectors.
b) Finding the sum and average of given numbers using arrays.



c) To display elements of list in reverse order.
d) Finding the minimum and maximum elements in the array.

4(a) Implement R script to perform various operations on vectors.
 In R, a sequence of elements which share the same data type is known as vector. 
 A vector supports logical, integer, double, character, complex, or raw data type. 
 The elements which are contained in vector known as components of the vector. 
 We can check the type of vector with the help of the typeof() function.

The length is an important property of a vector. A vector length is basically the number of elements 
in the vector, and it is calculated with the help of the length() function.
Vector is classified into two parts, i.e., Atomic vectors and Lists. They have three common 
properties, i.e., function type, function length, and attribute function.
How to create a vector in R?
 In R, we use c() function to create a vector. This function returns a one-dimensional array or 

simply vector. 
 The c() function is a generic function which combines its argument. All arguments are 

restricted with a common data type which is the type of the returned value. 
There are various other ways to create a vector in R, which are as follows:
1) Using the colon(:) operator
We can create a vector with the help of the colon operator. There is the following syntax to use 
colon operator:

1. z<-x:y   
This operator creates a vector with elements from x to y and assigns it to z.
Example:

A <- 4: -10  
      A  
Output
[1]   4   3   2   1   0   -1   -2   -3   -4   -5   -6   -7   -8   -9   -10
2) Using the seq() function
In R, we can create a vector with the help of the seq() function. A sequence function creates a 
sequence of elements as a vector. The seq() function is used in two ways, i.e., by setting step size 
with ?by' parameter or specifying the length of the vector with the 'length.out' feature.
Example
numbers <- seq(from = 0, to = 100, by = 20)
numbers
Output:
[1]   0  20  40  60  80 100

Note: The seq() function has three parameters: from is where the sequence starts, to is where the 
sequence stops, and by is the interval of the sequence.
Atomic vectors in R
In R, there are four types of atomic vectors. Atomic vectors play an important role in Data Science. 
Atomic vectors are created with the help of c() function. These atomic vectors are as follows:
Example
# Vector of strings
fruits <- c("banana", "apple", "orange")
# Print fruits
fruits
Output:
[1] "banana" "apple" "orange"
In this example, we create a vector that combines numerical values:
Example
# Vector of numerical values
numbers <- c(1, 2, 3)
# Print numbers



numbers
Output:
[1] 1 2 3
To create a vector with numerical values in a sequence, use the : operator:
Example
# Vector with numerical values in a sequence
numbers <- 1:10
numbers
Output:
[1]  1  2  3  4  5  6  7  8  9 10
Atomic vectors in R
In R, there are four types of atomic vectors. Atomic vectors play an important role in Data Science. 
Atomic vectors are created with the help of c() function. These atomic vectors are as follows:
1. Numeric vector
The decimal values are known as numeric data types in R. If we assign a decimal value to any 
variable d, then this d variable will become a numeric type. A vector which contains numeric 
elements is known as a numeric vector.
Example:

d<-45.5  
num_vec<-c(10.1, 10.2, 33.2)  
d  
num_vec  
class(d)  
class(num_vec)  

Output:
[1] 10.1 10.2 33.2
[1] "numeric"
[1] "numeric"
2. Integer vector
A non-fraction numeric value is known as integer data. This integer data is represented by "Int." 
The Int size is 2 bytes and long Int size of 4 bytes. There is two way to assign an integer value to a 
variable, i.e., by using as.integer() function and appending of L to the value.
A vector which contains integer elements is known as an integer vector.
Example:

d<-as.integer(5)  
e<-5L  
int_vec<-c(1,2,3,4,5)  
int_vec<-as.integer(int_vec)  
int_vec1<-c(1L,2L,3L,4L,5L)  
class(d)  
class(e)  
class(int_vec)  
class(int_vec1)  

Output:
[1] "integer"
[1] "integer"
[1] "integer"
[1] "integer"

3. Character vector
A character is held as a one-byte integer in memory. In R, there are two different ways to create a 
character data type value, i.e., using as.character() function and by typing string between double 
quotes("") or single quotes('').
A vector which contains character elements is known as an integer vector.
Example:



d<-'shubham'  
e<-"Arpita"  
f<-65  
f<-as.character(f)  
d  
e  
f  
char_vec<-c(1,2,3,4,5)  
char_vec<-as.character(char_vec)  
char_vec1<-c("shubham","arpita","nishka","vaishali")  
char_vec  
class(d)  
class(e)  
class(f)  
class(char_vec)  
class(char_vec1)  

Output:
> d  
[1] "shubham"
> e
[1] "Arpita"
> f 
[1] "65"
> char_vec  
[1] "1" "2" "3" "4" "5"
> class(d)  
[1] "character"
> class(e)  
[1] "character"
> class(f)  
[1] "character"
> class(char_vec)  
[1] "character"
> class(char_vec1)
[1] "character"
Accessing elements of vectors
We can access the elements of a vector with the help of vector indexing. Indexing denotes the 
position where the value in a vector is stored. Indexing will be performed with the help of integer, 
character, or logic.
1) Indexing with integer vector
On integer vector, indexing is performed in the same way as we have applied in C, C++, and java. 
There is only one difference, i.e., in C, C++, and java the indexing starts from 0, but in R, the 
indexing starts from 1. Like other programming languages, we perform indexing by specifying an 
integer value in square braces [] next to our vector.
Example:

seq_vec<-seq(1,4,length.out=6)  
seq_vec  
seq_vec[2]  

Output:
[1] 1.0 1.6 2.2 2.8 3.4 4.0
[1] 1.6
2) Indexing with a character vector



In character vector indexing, we assign a unique key to each element of the vector. These keys are 
uniquely defined as each element and can be accessed very easily. Let's see an example to 
understand how it is performed.
Example:

char_vec<-c("shubham"=22,"arpita"=23,"vaishali"=25)  
char_vec  
char_vec["arpita"]  

Output
shubham   arpita vaishali
   22      23     25
arpita
      23
3) Indexing with a logical vector
In logical indexing, it returns the values of those positions whose corresponding position has a 
logical vector TRUE. Let see an example to understand how it is performed on vectors.
Example:

a<-c(1,2,3,4,5,6)  
a[c(TRUE, FALSE,TRUE,TRUE,FALSE,TRUE)]  

Output
[1] 1 3 4 6
Vector Operation
In R, there are various operation which is performed on the vector. We can add, subtract, multiply 
or divide two or more vectors from each other.
1) Combining vectors
The c() function is not only used to create a vector, but also it is also used to combine two vectors. 
By combining one or more vectors, it forms a new vector which contains all the elements of each 
vector. Let see an example to see how c() function combines the vectors.
Example:
p <- c(1,2,3,5,7,8)
q <- c("subbu","raju","raju","sankar","rajesh","ramesh")
r <- c(p,q)
r
Output:
[1] "1"      "2"      "3"      "5"      "7"      "8"      "subbu"  "raju"   "raju"   "sankar" "rajesh" "ramesh"
2) Arithmetic operations
We can perform all the arithmetic operation on vectors. The arithmetic operations are performed 
member-by-member on vectors. We can add, subtract, multiply, or divide two vectors. Let see an 
example to understand how arithmetic operations are performed on vectors.
Example:
a<-c(1,3,5,7)  
b<-c(2,4,6,8)  
print("Addition of a+b")
a+b
print("Subtraction of a-b")
a-b
print("Division of a/b")
a/b
print("Modolus of a%%b")
a%%b  

Output:
[1] "Addition of a+b"
> a+b
[1]  3  7 11 15



[1] "Subtraction of a-b"
> a-b
[1] -1 -1 -1 -1
[1] "Division of a/b"
> a/b
[1] 0.5000000 0.7500000 0.8333333 0.8750000
[1] "Modolus of a%%b"
> a%%b
[1] 1 3 5 7

Vector Element Recycling
If we apply arithmetic operations to two vectors of unequal length, then the elements of the shorter 
vector are recycled to complete the operations.
v1 <- c(3,8,4,5,0,11)
v2 <- c(4,11)
# V2 becomes c(4,11,4,11,4,11)
add.result <- v1+v2
print(add.result)
sub.result <- v1-v2
print(sub.result)
Output:
[1]  7 19  8 16  4 22
[1] -1 -3  0 -6 -4  0
Vector Element Sorting
Elements in a vector can be sorted using the sort() function.
v <- c(3,8,4,5,0,11, -9, 304)
# Sort the elements of the vector.
sort.result <- sort(v)
print(sort.result)
# Sort the elements in the reverse order.
revsort.result <- sort(v, decreasing = TRUE)
print(revsort.result)
# Sorting character vectors.
v <- c("Red","Blue","yellow","violet")
sort.result <- sort(v)
print(sort.result)
# Sorting character vectors in reverse order.
revsort.result <- sort(v, decreasing = TRUE)
print(revsort.result)

Output:
print(sort.result)
[1]  -9   0   3   4   5   8  11 304
print(revsort.result)
[1] 304  11   8   5   4   3   0  -9
print(sort.result)
[1] "Blue"   "Red"    "violet" "yellow"
print(revsort.result)
[1] "yellow" "violet" "Red"    "Blue"

4(b) Implement R script for finding the sum and average of given numbers using arrays.

thisarray <- c(1:24)
multiarray <- array(thisarray,dim = c(4,3,2))



print(multiarray) 

print("sum of array elements:") 
print(sum(multiarray)) 

print("Length of the array:")
len <-length(multiarray)
len

print("Average of array elements:") 
print(sum(multiarray)/len)

Output:
[1] "sum of array elements:"
[1] 300
[1] "Length of the array:"
[1] 24
[1] "Average of array elements:"
[1] 12.5

4(c) Implement R script to display elements of list in reverse order.
list1 <-c(1:24)
print(list1) 
print(Elements in Reverse Order")
rev.default(list1)
Output:
[1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
[1] "Elements in Reverse Order"
[1] 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1

4(d) Implement R script to find the minimum and maximum elements in the array.
nums = c(10, 20, 30, 40, 50, 60)
array1 <-array(nums) 
print("The elements in the Array:")
array1
print(paste("Maximum value :",max(nums)))
print(paste("Minimum value :",min(nums)))

Output:
[1] "The elements in the Array:"
[1] 10 20 30 40 50 60
[1] "Maximum value : 60"
[1] "Minimum value : 10"

VIVA QUESTIONS

1. A single element of a character vector is referred as ________
a) Character string b) Stringc) Data strings d) Raw data
Answer: a



Explanation: Single element of a character vector is often referred to as a character string. Dates are represented by the 
Date class and can be coerced from a character string using the as.Date() function. This is a common way to end up 
with a Date object in R.

2. R files has an extension ______
a) .R b) .S c) .Rp d) .c
Answer: a
Explanation: All R files have an extension .R. R provides a mechanism for recalling and re-executing previous 
commands. All S programmed files will have an extension .S. But R has many functions than S.

3. Data frames can be converted into a matrix by calling the following function data ______
a) matr() b) matrix() c) matrixf() d) matrixfunc()
Answer: b
Explanation: as.matrix function should be used to coerce a data frame to a matrix. It might seem that the as.matrix() 
function should be used to coerce a data frame to a matrix.

4. What will be the output of the following R code?
       x <- (“a”, “b”)
       as.logical(x)
a) a b b) “a” “b” c) 1 1 d) Error
Answer: d
Explanation: It is not possible to coerce, so you will get a Warning. Logical creates a logical vector of the specified 
length. Each element of the vector is equal to FALSE. as.logical attempts to coerce its argument to be of a logical type.

5. How to install for a package and all of the other packages on which for depends?
a) install.packages (for, depends = TRUE)
b) R.install.packages (“for”, depends = TRUE)
c) install.packages (“for”, depends = TRUE)
d) install (“for”, depends = FALSE)
Answer: c
Explanation: To install a package named for, open up R and type install.packages(“for”). To install foo and 
additionally install all of the other packages on which for depends, instead type install.packages (“for”, depends = 
TRUE).

Week-5:
a) Implement R script to perform various operations on matrices.
b) Implement R script to extract the data from dataframes.
c) Write R script to display file contents.



d) Write R script to copy file contents from one to another.

5(a) a) Implement R script to perform various operations on matrices.
Matrix operations
In R, we can perform the mathematical operations on a matrix such as addition, subtraction, 
multiplication, etc.
R <- matrix(c(5:16), nrow = 4,ncol=3)  
S <- matrix(c(1:12), nrow = 4,ncol=3)  
# Display two matrices R and S
print(R)
print(S)
#Addition  
sum<-R+S  
print(sum)  
#Subtraction  
sub<-R-S  
print(sub)  
#Multiplication  
mul<-R*S  
print(mul)  
#Division  
div<-R/S  
print(div)  
Output:
print(R)
     [,1] [,2] [,3]
[1,]    5    9   13
[2,]    6   10   14
[3,]    7   11   15
[4,]    8   12   16
 print(S)
     [,1] [,2] [,3]
[1,]    1    5    9
[2,]    2    6   10
[3,]    3    7   11
[4,]    4    8   12
sum<-R+S  
print(sum)  
     [,1] [,2] [,3]
[1,]    6   14   22
[2,]    8   16   24
[3,]   10   18   26
[4,]   12   20   28

sub<-R-S  
print(sub)  
     [,1] [,2] [,3]
[1,]    4    4    4
[2,]    4    4    4
[3,]    4    4    4
[4,]    4    4    4
mul<-R*S  
print(mul)  
     [,1] [,2] [,3]
[1,]    5   45  117



[2,]   12   60  140
[3,]   21   77  165
[4,]   32   96  192
 div<-R/S  
print(div)  
         [,1]     [,2]     [,3]
[1,] 5.000000 1.800000 1.444444
[2,] 3.000000 1.666667 1.400000
[3,] 2.333333 1.571429 1.363636
[4,] 2.000000 1.500000 1.333333

5(b) Implement R script to extract the data from dataframes.
exam_data = data.frame(
name = c('Anastasia', 'Dima', 'Katherine', 'James', 'Emily', 'Michael', 'Matthew', 'Laura', 'Kevin', 
'Jonas'),
score = c(12.5, 9, 16.5, 12, 9, 20, 14.5, 13.5, 8, 19),
attempts = c(1, 3, 2, 3, 2, 3, 1, 1, 2, 1),
qualify = c('yes', 'no', 'yes', 'no', 'no', 'yes', 'yes', 'no', 'no', 'yes')
)
print("Original dataframe:")
print(exam_data)
print("Extract 3rd and 5th rows with 1st and 3rd columns :")
result =  exam_data[c(3,5),c(1,3)]
print(result)

Output:
print(exam_data)
     name          score     attempts     qualify
1  Anastasia    12.5       1                yes
2  Dima           9.0         3                no
3  Katherine   16.5        2                yes
4  James         12.0        3                no
5  Emily         9.0          2                no
6  Michael     20.0         3               yes
7  Matthew    14.5        1                yes
8  Laura         13.5        1                no
9  Kevin          8.0        2                no
10Jonas         19.0        1                yes
[1] "Extract 3rd and 5th rows with 1st and 3rd columns:"
   name attempts
3 Katherine        2
5 Emily             2

5(c) Write R script to display file contents.
 Reading a text file

One of the important formats to store a file is in a text file. R provides various methods that one 
can read data from a text file.

 read.delim(): This method is used for reading “tab-separated value” files (“.txt”). By 
default, point (“.”) is used as decimal points.

           read.delim(file, header = TRUE, sep = “\t”, dec = “.”, …)

file: the path to the file containing the data to be read into R.
header: a logical value. If TRUE, read.delim() assumes that your file has a header row, so row 1 
is the name of each column. If that’s not the case, you can add the argument header = FALSE.



sep: the field separator character. “\t” is used for a tab-delimited file.
dec: the character used in the file for decimal points.

 read.delim2(): This method is used for reading “tab-separated value” files (“.txt”). By 
default, point (“,”) is used as decimal points.
 read.delim2(file, header = TRUE, sep = “\t”, dec = “,”, …)

 file.choose(): In R it’s also possible to choose a file interactively using the 
function file.choose(), and if you’re a beginner in R programming then this method is very 
useful for you.

 read_tsv(): This method is also used for to read a tab separated (“\t”) values by using the 
help of readr package.
read_tsv(file, col_names = TRUE)
file: the path to the file containing the data to be read into R.
col_names: Either TRUE, FALSE, or a character vector specifying column names. If 
TRUE, the first row of the input will be used as the column names.

Example:1
# R program reading a text file
# Read a text file using read.delim()
myData= read.delim("C:/Users/rajen/OneDrive/Documents/sample.txt", header = FALSE)
print(myData)
Output:
1 Welcome to R Programming Lab
Example:2
# R program reading a text file
# Read a text file using read.delim2
myData = read.delim2("C:/Users/rajen/OneDrive/Documents/sample.txt", header = FALSE)
print(myData)
Output:
1 Welcome to R Programming Lab
Example:3
# R program reading a text file using file.choose()
myFile = read.delim(file.choose(), header = FALSE)
# If you use the code above in RStudio
# you will be asked to choose a file
print(myFile)
Output:
1 Welcome to R Programming Lab
Example:4
# R program to read text file
# using readr package
# Import the readr library
install.packages("readr")
library(readr)
# Use read_tsv() to read text file
myData = read_tsv("C:/Users/rajen/OneDrive/Documents/sample.txt",
col_names = FALSE)
print(myData)
Output:
A tibble: 1 x 1
  X1                          
  <chr>                       
1 Welcome to R Programming Lab

5(d) Write R script to copy file contents from one to another.

library(readr)



file1=read_file("C:/Users/rajen/OneDrive/Documents/sample.txt")
print(file1)
write_file(file1,"file2.txt")
d=read_file("file2.txt")
print(d)

Output:
[1] "Welcome to R Programming Lab"

VIVA QUESTIONS
1. The longer programs are called ____________
    a) Files b) Structures
    c) Scripts          d) Data
Answer: c
Explanation: The longer programs called scripts, there is too much code to write all at 
once at the command prompt. Furthermore, for longer scripts, it is convenient to be able to 
only modify a certain piece of the script and run it again in R.

2. Scripts will run on ___________________
   a) Script Editors b) Console
    c) Terminal d) GCC Compiler
Answer: a
Explanation: script editors are designed to aid the communication and code writing 
process. They have all sorts of features including R syntax highlighting, automatic code 
completion, delimiter matching, and dynamic help on the R functions.

3. Which of the following is a “Recommended” package in R?
     a) Util  b) Lang c) Stats d) Spatial
Answer: d
Explanation: “Recommended” packages also include boot, class, cluster, codetools, 
foreign, KernSmooth, lattice, mgcv, nlme, rpart, survival, MASS, nnet, Matrix. There are 
about ten thousand packages in R now.

4. Which programming language is more based on the results?
a) R b) C c) C++ d) Java
Answer: a
Explanation: Compared to other programming languages, the R community tends to be 
more focussed on results instead of processes. Knowledge of software engineering best 
practice.

5. R is mostly used in ______________
a) Problem solving   b) Statistics  c) Probability d) All of the mentioned
Answer: d
Explanation: Statistics for relatively advanced users. R has thousands of packages, 
designed, maintained, and widely used by statisticians. We can code ourselves if a 
command is not present.

Week-6
a) Write an R script to find basic descriptive statistics using summary, str, quartile function 
     on mtcars & cars datasets.
b) Write an R script to find subset of dataset by using subset(), aggregate() functions on iris dataset.



6(a) Write an R script to find basic descriptive statistics using summary, str, quartile   
        function on mtcars & cars datasets.
What is Descriptive Statistics?

 Descriptive statistics is the branch of statistics that focuses on describing and gaining more 
insight into the data in its present state. 

 It deals with what the data in its current state means. It makes the data easier to understand 
and also gives us knowledge about the data which is necessary to perform further analysis. 

 Average measures like mean, median, mode, etc. are a good example of descriptive 
statistics.

Descriptive Statistics in R

R programming language provides us with lots of simple yet effective functions to perform 
descriptive statistics and gain more knowledge about our data. Summarizing the data, calculating 
average measures, finding out cumulative measures, summarizing rows/columns of data structures, 
etc. everything is possible with trivial commands. Let’s start simple with the summarizing 
functions str() and summary().
Summarizing your Data

R provides two very simple functions that can instantly summarize our data for us. These are 
the str() and the summary() functions.

str() function
The str() function takes a single object as an argument and compactly shows us the structure of the 
input object. It shows us details like length, data type, names and other specifics about the 
components of the object. 

# shows us the structure of the input object.
str(mtcars)
Output:
str(mtcars)
'data.frame': 32 obs. of  11 variables:
 $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
 $ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
 $ disp: num  160 160 108 258 360 ...
 $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
 $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
 $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
 $ qsec: num  16.5 17 18.6 19.4 17 ...
 $ vs  : num  0 0 1 1 0 1 0 1 1 1 ...
 $ am  : num  1 1 1 0 0 0 0 0 0 0 ...
 $ gear: num  4 4 4 3 3 3 3 4 4 4 ...
 $ carb: num  4 4 1 1 2 1 4 2 2 4 ...
str(cars)
Output:
str(cars)
'data.frame': 50 obs. of  2 variables:
 $ speed: num  4 4 7 7 8 9 10 10 10 11 ...
 $ dist : num  2 10 4 22 16 10 18 26 34 17 ...

summary() function:
The summary() function also takes a single object as an argument. It then returns the averages 
measures like mean, median, minimum, maximum, 1st quantile, 3rd quantile, etc. for each 
component or variable in the object. Here is an example of the summary function in action.



summary(mtcars)
Output:
summary(mtcars)
      mpg             cyl             disp             hp             drat             wt             qsec      
 Min.   :10.40   Min.   :4.000   Min.   : 71.1   Min.   : 52.0   Min.   :2.760   Min.   :1.513   Min.   
:14.50  
 1st Qu.:15.43   1st Qu.:4.000   1st Qu.:120.8   1st Qu.: 96.5   1st Qu.:3.080   1st Qu.:2.581   1st 
Qu.:16.89  
 Median :19.20   Median :6.000   Median :196.3   Median :123.0   Median :3.695   Median :3.325   
Median :17.71  
 Mean   :20.09   Mean   :6.188   Mean   :230.7   Mean   :146.7   Mean   :3.597   Mean   :3.217   
Mean   :17.85  
 3rd Qu.:22.80   3rd Qu.:8.000   3rd Qu.:326.0   3rd Qu.:180.0   3rd Qu.:3.920   3rd Qu.:3.610   3rd 
Qu.:18.90  
 Max.   :33.90   Max.   :8.000   Max.   :472.0   Max.   :335.0   Max.   :4.930   Max.   :5.424   Max.   
:22.90  
       vs               am              gear            carb      
 Min.   :0.0000   Min.   :0.0000   Min.   :3.000   Min.   :1.000  
 1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:3.000   1st Qu.:2.000  
 Median :0.0000   Median :0.0000   Median :4.000   Median :2.000  
 Mean   :0.4375   Mean   :0.4062   Mean   :3.688   Mean   :2.812  
 3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:4.000   3rd Qu.:4.000  
 Max.   :1.0000   Max.   :1.0000   Max.   :5.000   Max.   :8.000  
summary(cars)
Output:
summary(cars)
      speed             dist       
 Min.   : 4.0     Min.   :  2.00  
 1st Qu.:12.0   1st Qu.: 26.00  
 Median :15.0  Median : 36.00  
 Mean   :15.4   Mean   : 42.98  
 3rd Qu.:19.0   3rd Qu.: 56.00  
 Max.   :25.0   Max.   :120.00  
Getting the Average Measures

R provides a number of functions that give us different average measures for given data. These 
average measures include:

 Mean: The mean of a given set of numeric or logical values(it may be a vector or a row or 
column of any other data structure) can be easily found using the mean() function.

 Median: Finding the median of a set of numeric or logical values is also very easy by using 
the median() function.

 Standard deviation: The standard deviation of a set of numerical values can be found using 
the sd() function.

 Variance: the var() function gives us the variance of a set of numeric or logical values.
 Median Absolute Variance: The median absolute variance of a set of numeric or logical 

values can be found by using the mad() function.
 Maximum: In a given set of numeric or logical values, we can use the max() function to 

find the maximum or the largest value in the set.
Note: NA is considered to be the largest by the max() function unless its na.rm argument is set to 
TRUE.
 Minimum: The min() function is a very handy way to find out the smallest value in a set of 

numeric values.
Note: Like the max() function, the min() function considers NA to be the smallest unless na.rm is 
set to TRUE.



 Sum: The sum of a set of numerical values can be found by simply using 
the sum() function.

 Length: The length or the number of values in a set is given by the length() function.
Example:
mean(mtcars$mpg)
median(mtcars$mpg)
sd(mtcars$mpg)
var(mtcars$mpg)
mad(mtcars$mpg)
max(mtcars$mpg, na.rm = TRUE)
min(mtcars$mpg, na.rm = TRUE)
sum(mtcars$mpg)
length(mtcars$mpg)
Output:
mean(mtcars$mpg)
[1] 20.09062
> median(mtcars$mpg)
[1] 19.2
> sd(mtcars$mpg)
[1] 6.026948
> var(mtcars$mpg)
[1] 36.3241
> mad(mtcars$mpg)
[1] 5.41149
> max(mtcars$mpg, na.rm = TRUE)
[1] 33.9
> min(mtcars$mpg, na.rm = TRUE)
[1] 10.4
> sum(mtcars$mpg)
[1] 642.9
> length(mtcars$mpg)
[1] 32
Quantile Function:
 A quantile is nothing but a sample that is divided into equal groups or sizes. Due to this 

nature, the quantiles are also called as Fractiles. In the quantiles, the 25th percentile is called 
as lower quartile, 50th percentile is called as Median and the 75th Percentile is called as the 
upper quartile.

 This is particularly useful when you’re doing exploratory analysis and reporting, especially 
if you’re analyzing data which may not be normally distributed.

 We’re going to use the r quantile function; this utility is part of base R (so you don’t need to 
import any libraries) and can be adapted to generate a variety of “rank based” statistics 
about your sample.

Quantile() function syntax

The syntax of the Quantile() function in R is,
quantile(x, probs = , na.rm = FALSE)
Where,
 X = the input vector or the values
 Probs = probabilities of values between 0 and 1.
 na.rm = removes the NA values.

We’re going to use the r quantile function; this utility is part of base R (so you don’t need to import 
any libraries) and can be adapted to generate a variety of “rank based” statistics about your sample.
Example:
# quartile in R example
test = c(9,9,8,9,10,9,3,5,6,8,9,10,11,12,13,11,10)



# get quartile in r code (single line)
quantile(test, prob=c(.25,.5,.75))

Output:
quantile(test, prob=c(.25,.5,.75))
25% 50% 75% 
  8     9      10

You can also use the summary function to generate the same information.
# quartile in R example - summary function
test = c(9,9,8,9,10,9,3,5,6,8,9,10,11,12,13,11,10)
summary(test)

Output:
summary(test)
   Min.   1st Qu.    Median       Mean        3rd Qu.    Max. 
  3.000   8.000      9.000           8.941        10.000   13.000

Quantile function using mtcars and cars dataset.

quantile(mtcars$wt)

Output:
      0%         25%     50%           75%       100% 
1.51300   2.58125   3.32500    3.61000    5.42400

quantile(mtcars$mpg)
Output:
    0%    25%    50%    75%    100% 
10.400 15.425 19.200 22.800 33.900

quantile(cars$speed)
Output:
  0%   25%   50%   75%   100% 
   4     12      15       19       25
quantile(cars$speed,c(.2, .4, .8))
Output:
20% 40% 80% 
11    14     20

6(b) Write an R script to find subset of dataset by using subset(), aggregate() functions on iris 
        dataset.

Sub setting Datasets in R
 R has powerful indexing features for accessing object elements. These features can be used 

to select and exclude variables and observations.
 Whether you're comparing how different demographics respond to marketing campaigns, 

zooming in on a specific time frame, or pulling information about a select few products 
from the inventory, subsetting datasets enables you to extract useful observations in your 
dataset. 

 R is a great tool that makes subsetting data easy and intuitive.
 The subset( ) function is the easiest way to select variables and observations.
 Subsetting your data does not change the content of your data, but simply selects the 

portion most relevant to the goal you have in mind. In general, there are three ways to 
subset the rows and columns of your dataset—by index, by name, and by value.



Iris dataset

 Iris dataset gives the measurements in centimetres of the variables sepal length and width 
and petal length and width, respectively, for 50 flowers from each of 3 species of iris. The 
species are Iris setosa, versicolor, and virginica.

 In this picture You can see what are we dealing with and how exactly looks the variables 
(sepal length and width and petal length and width) we are measuring and the object itself:

Format

iris is a data frame with 150 cases (rows) and 5 variables (columns) named Sepaal.Length, 
Sepal.Width, Petal.Length, Petal.Width, and Species.

Here’s a little summary of what you can basically see in dataset iris:

summary(iris)
Output:
  Sepal.Length    Sepal.Width     Petal.Length       Petal.Width          Species  
 Min.   :4.300     Min.   :2.000     Min.   :1.000      Min.   :0.100        setosa    :50  
 1st Qu.:5.100    1st Qu.:2.800    1st Qu.:1.600     1st Qu.:0.300        versicolor:50  
 Median :5.800   Median :3.000  Median :4.350   Median :1.300      virginica :50  
 Mean   :5.843    Mean   :3.057   Mean   :3.758     Mean   :1.199                  
 3rd Qu.:6.400    3rd Qu.:3.300   3rd Qu.:5.100    3rd Qu.:1.800                  
 Max.   :7.900    Max.   :4.400     Max.   :6.900     Max.   :2.500   

names(iris)
[1] "Sepal.Length" "Sepal.Width"  "Petal.Length" "Petal.Width"  "Species"

str(iris)
'data.frame': 150 obs. of  5 variables:
 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
 $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
 $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
 $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

Let's take a look at the data itself. Let's see the first 5 rows of data for each class:

# Get first 5 rows of each subset
subset(iris, Species == "setosa")[1:5,]

Output:
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species



1          5.1         3.5             1.4             0.2     setosa
2         4.9        3.0             1.4                 0.2      setosa
3          4.7         3.2             1.3                 0.2      setosa
4         4.6         3.1             1.5                 0.2      setosa
5          5.0         3.6             1.4                 0.2      setosa

subset(iris, Species == "versicolor")[1:5,]
Output:
   Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
51           7.0                 3.2                 4.7              1.4        versicolor
52           6.4                 3.2                 4.5              1.5        versicolor
53           6.9                 3.1                 4.9              1.5        versicolor
54           5.5                 2.3                 4.0              1.3        versicolor
55           6.5                 2.8                 4.6              1.5        versicolor

subset(iris, Species == "virginica")[1:5,]

Output:
     Sepal.Length Sepal.Width Petal.Length Petal.Width   Species
101                   6.3                3.3             6.0                 2.5        virginica
102                   5.8                2.7             5.1                 1.9        virginica
103                   7.1                3.0             5.9                 2.1        virginica
104                   6.3                2.9             5.6                 1.8         virginica
105                   6.5                3.0             5.8                 2.2          virginica
AGGREGATE() FUNCTION IN R
 aggregate() Function in R Splits the data into subsets, computes summary statistics for each 

subsets and returns the result in a group by form. 
 aggregate() function is useful in performing all the aggregate operations like sum, count, 

mean, minimum and Maximum.


Use aggregate() function to find summary statistics by group.

Syntax for Aggregate() Function in R:

aggregate(x, by, FUN, …, simplify = TRUE, drop = TRUE)

X an R object, mostly a data frame
by a list of grouping elements, by which the subsets are grouped by
FUN a function to compute the summary statistics
simplif
y

a logical indicating whether results should be simplified to a vector or matrix if 
possible

drop a logical indicating whether to drop unused combinations of grouping values.

Example:
agg_mean = aggregate(iris[,1:4], by = list(iris$Species),FUN=mean,na.rm=TRUE)
agg_mean
the above code takes first 4 columns of iris data set and groups by “species” by computing the 
mean for each group, so the output will be
Output:
       Group.1 Sepal.Length Sepal.Width Petal.Length Petal.Width
1     setosa              5.006              3.428          1.462             0.246
2     versicolor        5.936              2.770          4.260             1.326
3     virginica          6.588              2.974          5.552             2.026

Example for aggregate() function in R with sum: 



Let’s use the aggregate() function in R to create the sum of all the metrics across species and group 
by species.

# Aggregate function in R with sum summary statistics
agg_sum = aggregate(iris[,1:4],by=list(iris$Species),FUN=sum, na.rm=TRUE)
agg_sum
Output:

Group.1 Sepal.Length Sepal.Width Petal.Length Petal.Width
1     setosa               250.3             171.4           73.1              12.3
2          versicolor        296.8              138.5           213.0            66.3
3          virginica          329.4              148.7           277.6           101.3

Example for aggregate() function in R with sum: 
Let’s use the aggregate() function in R to create the sum of all the metrics across species and group 
by species.

# Aggregate function in R with sum summary statistics
agg_sum = aggregate(iris[,1:4],by=list(iris$Species),FUN=sum, na.rm=TRUE)
agg_sum

Output:
Group.1 Sepal.Length Sepal.Width Petal.Length Petal.Width

1          setosa              250.3               171.4           73.1             12.3
2          versicolor        296.8               138.5           213.0           66.3
3          virginica         329.4               148.7           277.6           101.3

Example for aggregate() function in R with count: 
# Aggregate function in R with count
agg_count = aggregate(iris[,1:4],by=list(iris$Species),FUN=length)
agg_count

the above code takes first 4 columns of iris data set and groups by “species” by computing the 
count for each group, so the output will be
Output:

Group.1 Sepal.Length Sepal.Width Petal.Length Petal.Width
1     setosa                 50                 50                  50                50
2 versicolor               50                 50                  50                50
3  virginica                 50                 50                 50                 50

Example for aggregate() function in R with maximum: 
Let’s use the aggregate() function to create the maximum of all the metrics across species and 
group by species.

# Aggregate function in R with maximum
agg_max = aggregate(iris[,1:4],by=list(iris$Species),FUN=max, na.rm=TRUE)
agg_max

the above code takes first 4 columns of iris data set and groups by “species” by computing the max 
for each group, so the output will be
Output:

Group.1 Sepal.Length Sepal.Width Petal.Length Petal.Width
1     setosa                    5.8               4.4                 1.9               0.6
2 versicolor               7.0               3.4                 5.1               1.8
3  virginica                 7.9               3.8                 6.9               2.5



VIVA QUESTIONS

6. What is the meaning of “<-“?
a) Functions
b) Loops
c) Addition
d) Assignment
Answer: d
Explanation: The expression a <- 16 creates a variable called a and gives it the value 16 
called assignment. The variable on the left is assigned to the value on the right. The left 
side should have only a single one.

7. R has many functions regarding ________________
a) Statistics, Biotechnology  
b) Probability, Microbiology
c) Distributions, Physics
d) Statistics, Probability, Distributions
Answer: d
Explanation: R has many functions for all types of mathematical objects. For example, 
Statistics, Probability, Distributions like Multivariate, Continuous, Simple, Discrete etc.

8. ___________ hosts many add-on packages that can be used to extend the 
functionality of R.
a) CRAN
b) GNU
c) R studio
d) 450
Answer: a
Explanation: The primary R system is available from the Comprehensive R Archive 
Network, also known as CRAN. CRAN also hosts many add-on packages that can be 
used to extend the functionality of R.

9. The entities that R creates and manipulates are known as ________
    a) objects  b) task  
     c) container           d) packages
Answer: a
Explanation: These may be variables, arrays of numbers, character strings, functions, or 
more general structures built from such components.
10. Collection of objects currently stored in R is called as _______________
      a) package      b) workspace
      c) list      d) task
Answer: b
Explanation: All objects created during an R session can be stored permanently in a file 
for use in future R sessions.

Week-7
(a) Reading different types of data sets (.txt, .csv) from Web or disk and writing in file in specific 
     disk location.
(b) Reading Excel data sheet in R.
(c) Reading XML dataset in R.

7(a) Reading different types of data sets (.txt, .csv) from Web or disk and writing in file in    
        specific disk location.
Reading data from txt or csv files



The R base function read.table() is a general function that can be used to read a file in table format. 
The data will be imported as a data frame.
Note that, depending on the format of your file, several variants of read.table() are available, 
including read.csv, read.csv2(), read.delim and read.delim2().
 
 read.csv(): for reading “comma separated value” files (“.csv”).
 read.csv2(): variant used in countries that use a comma “,” as decimal point and a 

semicolon “;” as field separators.
 read.delim(): for reading “tab-separated value” files (“.txt”). By default, point (“.”) is used 

as decimal points.
 read.delim2(): for reading “tab-separated value” files (“.txt”). By default, comma (“,”) is 

used as decimal points.

The simplified format of these functions are, as follows:

# Read tabular data into R 
read.table(file, header = FALSE, sep = "", dec = ".") 
# Read "comma separated value" files (".csv") 
read.csv(file, header = TRUE, sep = ",", dec = ".", ...) 
# Or use read.csv2: variant used in countries that # use a comma as decimal point and a 
semicolon as field separator. 
read.csv2(file, header = TRUE, sep = ";", dec = ",", ...) 
# Read TAB delimited files 
read.delim(file, header = TRUE, sep = "\t", dec = ".", ...) read.delim2(file, header = TRUE, sep = 
"\t", dec = ",", ...)

 file: the path to the file containing the data to be imported into R.
 sep: the field separator character. “\t” is used for tab-delimited file.
 header: logical value. If TRUE, read.table() assumes that your file has a header row, so 

row 1 is the name of each column. If that’s not the case, you can add the argument header = 
FALSE.

 dec: the character used in the file for decimal points.
Reading a local file
To import a local .txt or a .csv file, the syntax would be:
# Read a txt file, named "mtcars.txt" 
my_data <- read.delim("mtcars.txt") 
# Read a csv file, named "mtcars.csv" 
my_data <- read.csv("mtcars.csv")

Note:
The above R code, assumes that the file “mtcars.txt” or “mtcars.csv” is in your current working 
directory. To know your current working directory, type the function getwd() in R console.

 It’s also possible to choose a file interactively using the function file.choose(), which I 
recommend if you’re a beginner in R programming:

# Read a txt file 
my_data <- read.delim(file.choose()) 
# Read a csv file 
my_data <- read.csv(file.choose())

If you use the R code above in RStudio, you will be asked to choose a file.
Reading a file from internet
It’s possible to use the functions read.delim(), read.csv() and read.table() to import files from the 
web.
my_data <- read.delim("http://www.sthda.com/upload/boxplot_format.txt") 



head(my_data)

Here I am using weather data.

Example-1: R program reading a .text file
# Read a text file using read.delim()
Data1 = read.delim("weather.txt", header = TRUE)
print(Data1)
Output:
my_data
    outlook temperature humidity windy play
1  overcast         hot     high FALSE  yes
2  overcast        cool   normal  TRUE  yes
3  overcast        mild     high  TRUE  yes
4  overcast         hot   normal FALSE  yes
5     rainy        mild     high FALSE  yes
6     rainy        cool   normal FALSE  yes
7     rainy        cool   normal  TRUE   no
8     rainy        mild   normal FALSE  yes
9     rainy        mild     high  TRUE   no
10    sunny         hot     high FALSE   no
11    sunny         hot     high  TRUE   no
12    sunny        mild     high FALSE   no
13    sunny        cool   normal FALSE  yes
14    sunny        mild   normal  TRUE  yes
Data2 <-read.table(“weather.txt”, header=TRUE, sep = "\t")
Data2
Output:
Data2
    outlook temperature humidity windy play
1   overcast         hot       FALSE  yes
2  overcast        cool   normal  TRUE  yes
3  overcast        mild     high  TRUE  yes
4  overcast         hot   normal FALSE  yes
5     rainy        mild     high FALSE  yes
6     rainy        cool   normal FALSE  yes
7     rainy        cool   normal  TRUE   no
8     rainy        mild   normal FALSE  yes
9     rainy        mild     high  TRUE   no
10    sunny         hot     high FALSE   no
11    sunny         hot     high  TRUE   no
12    sunny        mild     high FALSE   no
13    sunny        cool   normal FALSE  yes
14    sunny        mild   normal  TRUE  yes

Example-2: R program reading a .csv file
Data3 <- read.csv(“weather.csv”, header=TRUE)
Data3
outlook temperature humidity windy play
1  overcast         hot     high FALSE  yes
2  overcast        cool   normal  TRUE  yes
3  overcast        mild     high  TRUE  yes
4  overcast         hot   normal FALSE  yes
5     rainy        mild     high FALSE  yes



6     rainy        cool   normal FALSE  yes
7     rainy        cool   normal  TRUE   no
8     rainy        mild   normal FALSE  yes
9     rainy        mild     high  TRUE   no
10    sunny         hot     high FALSE   no
11    sunny         hot     high  TRUE   no
12    sunny        mild     high FALSE   no
13    sunny        cool   normal FALSE  yes
14    sunny        mild   normal  TRUE  yes
Data4 <-read.table(“weather.csv”, header=TRUE,sep=",")
Data4
outlook temperature humidity windy play
1  overcast         hot     high FALSE  yes
2  overcast        cool   normal  TRUE  yes
3  overcast        mild     high  TRUE  yes
4  overcast        hot   normal FALSE  yes
5     rainy         mild     high FALSE  yes
6     rainy        cool   normal FALSE  yes
7     rainy        cool   normal  TRUE   no
8     rainy        mild   normal FALSE  yes
9     rainy        mild     high  TRUE   no
10    sunny         hot     high FALSE   no
11    sunny         hot     high  TRUE   no
12    sunny        mild     high FALSE   no
13    sunny        cool   normal FALSE  yes
14    sunny        mild   normal  TRUE  yes

It’s also possible to choose a file interactively using the function file.choose()

 To read .txt file
data3 <-read.delim(file.choose(), header=TRUE)
data3

data4 <-read.table(file.choose(),header=TRUE, sep="\t")
data4
 To read .csv file
data1 <- read.csv(file.choose(), header=TRUE)
data1

data2 <-read.table(file.choose(), header=TRUE,sep=",")
data2
Reading a file from internet
It’s possible to use the functions read.delim(), read.csv() and read.table() to import files from the 
web.
my_data <- read.delim("http://www.sthda.com/upload/boxplot_format.txt") 
head(my_data)

Output:
Nom   variable Group

1   IND1       10     A
2   IND2        7     A
3   IND3       20     A
4   IND4       14     A
5   IND5      14     A
6   IND6       12     A



7   IND7       10     A
8   IND8       23     A
9   IND9       17     A
10 IND10     20     A
11 IND11       14     A
12 IND12       13     A
13 IND13       11     B
14 IND14       17     B
15 IND15       21     B
16 IND16       11     B
17 IND17       16     B
18 IND18       14     B
19  IND19       17     B
20 IND20       17     B
21 IND21       19     B
22 IND22       21     B
23 IND23        7     B
24 IND24       13     B
25 IND25        0     C
26 IND26        1     C
27 IND27        7     C
28 IND28        2     C
29 IND29        3     C
30 IND30        1     C
31 IND31        2     C
32 IND32        1     C
33 IND33        3     C
34 IND34        0     C
35 IND35        1     C
36 IND36        4     C
37 IND37        3     D
38 IND38        5     D
39 IND39       12     D
40 IND40        6     D
41 IND41        4     D
42 IND42        3     D
43 IND43        5     D
44 IND44        5     D
45 IND45        5     D
46 IND46        5     D
47 IND47        2     D
48 IND48        4     D
49 IND49        3     E
50 IND50        5     E
51 IND51        3     E
52 IND52        5     E
53 IND53        3     E
54 IND54        6     E
55 IND55        1     E
56 IND56        1     E
57 IND57        3     E
58 IND58        2     E
59 IND59        6     E
60 IND60        4     E
61  IND61       11     F



62 IND62        9     F
63 IND63       15     F
64 IND64       22     F
65 IND65       15     F
66 IND66       16     F
67 IND67       13     F
68 IND68       10     F
69 IND69       26     F
70 IND70       26     F
71 IND71       24     F
72 IND72       13     F
Import dataset in R programming
R is a programming language designed for data analysis. Therefore, loading data is one of the core 
features of R.
R contains a set of functions that can be used to load data sets into memory. You can also load data 
into memory using R Studio - via the menu items and toolbars.
Data Formats
R can load data in two different formats:

 CSV files
 Text files

CSV means Comma Separated Values. You can export CSV files from many data carrying 
applications. For instance, you can export CSV files from data in an Excel spreadsheet. Here is an 
example of how a CSV file looks like inside:

name,id,salary
"John Doe",1,99999.00
"Joe Blocks",2,120000.00
"Cindy Loo",3,150000.00

As you can see, the values on each line are separated by commas. The first line contains a list of 
column names. These column names tell what the data in the following lines mean. These names 
only make sense to you. R does not care about these names. R just uses these name to identify data 
from the different columns.
A text file is typically similar to a CSV file, but instead of using commas as separators between 
values, text files often use other characters, like e.g. a Tab character. Here is an example of how a 
text file could look inside:

name               id      salary

"John Doe"      1       99999.00
"Joe Blocks"    2       120000.00
"Cindy Loo"     3       150000.00

As you can see, the data might be easier to read in text format - if you look at the data directly in 
the data file that is. Once the data is loaded into R / R studio, there is no difference. You can look at 
the data in R Studio's tabular data set viewer, and then you cannot see the difference between CSV 
files and text files.
Actually, the name "text files" is a bit confusing. Both CSV files and text files contains data in 
textual form (as characters). One just uses commas as separator between the values, whereas the 
others use a tab character.

Load Data Via R Studio Menu Items
The easiest way to load data into memory in R is by using the R Studio menu items. R Studio has 
menu items for loading data in two different places. The first is in the toolbar of the upper right 
section of R Studio. This screenshot shows where the "Import Dataset" button is (look for the little 
mouse pointer "hand") :



When you click the button you get this little menu:

You can also import data from the top menu of R Studio. The next screenshot shows where the 
"Import Dataset" menu item is located in R Studio's top menu:

Text File or Web URL
As you can see in both the "Import Dataset" menu items, you can import a data set "From Text 
File" or "From Web URL". These two options refer to where you load the data from. "From Text 
File" means from a text file on your local computer. "From Web URL" means that you load the 
data from a web server somewhere on the internet.
Regardless of whether you choose "From Text File" or "From Web URL", R can load the file as 
either a CSV or text file. The location of the file has nothing to do with the data format used inside 
the file. Don't get confused by that. The menu item "From Text file" does not mean "text file 
format" (tab characters as separators). It just means "a file on your local computer". "From Local 
File" would probably have been a more informative text for this menu item.
Selecting Data Format
After you have chosen the location to load the file from, you will be shown a dialog like this:



The select boxes (drop down boxes) allows you to specify different configurations about the data 
format of the file you are about to import. In the boxes on the right you can see two boxes. The top 
box shows you what the data file looks like. The bottom box shows you how R Studio interprets the 
data in the file based on the configurations chosen in the select boxes in the left side of the dialog. 
If you change the choices in the select boxes you will see that the bottom right box changes.
When you have selected all the configurations you need in the select boxes on the left, click the 
"Import" button. The data will now be loaded into R Studio.
Note that R Studio prints the R commands needed to load the data into the R console in the left side 
of R studio. You can copy these functions and use them to load data into R via R code.
After the Data is Loaded
After you have loaded the data into R Studio it will look similar to the screenshot below:



7(b) Reading Excel data sheet in R.
Steps to Import an Excel file into R
Step 1: Install the readxl package
In the R Console, type the following command to install the readxl package:
install.packages(“readxl”)
Step 2: Prepare your Excel File
Let’s suppose that you have an Excel file with some data about products:

Product Price
Refrigerator 1200
Oven 750
Dishwasher 900
Coffee Maker 300

And let’s say that the Excel file name is product_list, and your goal is to import that file into R.
Step 3: Import the Excel file into R
In order to import your file, you’ll need to apply the following template in the R Editor:
library(“readxl”)
read.excel(“Path where your Excel file is stored\\FileName.xlsx”)
Example:
my_data <- read_excel("product_list.xlsx")
my_data   
    (OR)
my_data <- read_excel(file.choose())
my_data 
Note:
If you use the R code above in RStudio, you will be asked to choose a file.                                          
Output:
# A tibble: 4 x 2
     Product           Price
      <chr>             <dbl>
1   Refrigerator    1200
2   Oven                 750
3   Dishwasher       900
4   Coffee Maker   300

Importing Excel files using xlsx package
The xlsx package, a java-based solution, is one of the powerful R packages 
to read, write and format Excel files.
Installing and loading xlsx package
 Install

install.packages(“xlsx”)
 Load 

library(“xlsx)
Using xlsx package
There are two main functions in xlsx package for reading both xls and xlsx Excel files: read.xlsx() 
and read.xlsx2() [faster on big files compared to read.xlsx function].
The simplified formats are:
read.xlsx(file, sheetIndex, header=TRUE)
read.xlsx2(file, sheetIndex, header=TRUE)
 file: file path
 sheetIndex: the index of the sheet to be read
 header: a logical value. If TRUE, the first row is used as column names.

Example:
library(“xlsx”)

https://datatofish.com/install-package-r/


my_data1 <- read.xlsv(file.choose(), 1)  # read first sheet
7(c) Reading XML dataset in R.
In R, we can read the xml files by installing "XML" package into the R environment. This package 
will be installed with the help of the familiar command i.e., install. packages.
install.packages(“XML”)
Creating XML File
Save the following data with the .xml file extension to create an xml file. XML tags describe the 
meaning of data, so that data contained in such tags can easily tell or explain about the data.
Example: xml_data.xml
Example: xml_data.xml

<records>  
<employee_info>  
<id>1</id>  
<name>Shubham</name>  
<salary>623</salary>  
<date>1/1/2012</date>  
<dept>IT</dept>  
</employee_info>  
      
<employee_info>  
<id>2</id>  
<name>Nishka</name>  
<salary>552</salary>  
<date>1/1/2012</date>  
<dept>IT</dept>  
</employee_info>  
  
<employee_info>  
<id>1</id>  
<name>Gunjan</name>  
<salary>669</salary>  
<date>1/1/2012</date>  
<dept>IT</dept>  
</employee_info>  
  
<employee_info>  
<id>1</id>  
<name>Sumit</name>  
<salary>825</salary>  
<date>1/1/2012</date>  
<dept>IT</dept>  
</employee_info>  
  
<employee_info>  
<id>1</id>  
<name>Arpita</name>  
<salary>762</salary>  
<date>1/1/2012</date>  
<dept>IT</dept>  
</employee_info>  
  
<employee_info>  
<id>1</id>  
<name>Vaishali</name>  
<salary>882</salary>  



<date>1/1/2012</date>  
<dept>IT</dept>  
</employee_info>  
  
<employee_info>  
<id>1</id>  
<name>Anisha</name>  
<salary>783</salary>  
<date>1/1/2012</date>  
<dept>IT</dept>  
</employee_info>  
  
<employee_info>  
<id>1</id>  
<name>Ginni</name>  
<salary>964</salary>  
<date>1/1/2012</date>  
<dept>IT</dept>  
</employee_info>  
      
</records>  

Reading XML File
In R, we can easily read an xml file with the help of xmlParse() function. This function is stored as 
a list in R. To use this function, we first need to load the xml package with the help of the library() 
function. Apart from the xml package, we also need to load one additional package named methods.
Example: Reading xml data in the form of a list.
install.packages(“XML”)
# Loading the package required to read XML files.  

library("XML")  
# Also loading the other required package.  

library("methods")  
# Giving the input file name to the function.  

result <- xmlParse(file = "xml_data.xml")  
xml_data <- xmlToList(result)  
print(xml_data)  
Output:
   xml_data <- xmlToList(result)  
  print(xml_data)  
$employee_info
$employee_info$id
[1] "1"
$employee_info$name
[1] "Shubham"
$employee_info$salary
[1] "623"
$employee_info$date
[1] "1/1/2012"
$employee_info$dept
[1] "IT"
$employee_info
$employee_info$id
[1] "2"
$employee_info$name
[1] "Nishka"
$employee_info$salary



[1] "552"
$employee_info$date
[1] "1/1/2012"
$employee_info$dept
[1] "IT"
$employee_info
$employee_info$id
[1] "1"
$employee_info$name
[1] "Gunjan"
$employee_info$salary
[1] "669"
$employee_info$date
[1] "1/1/2012"
$employee_info$dept
[1] "IT"
$employee_info
$employee_info$id
[1] "1"
$employee_info$name
[1] "Sumit"
$employee_info$salary
[1] "825"
$employee_info$date
[1] "1/1/2012"
$employee_info$dept
[1] "IT"
$employee_info
$employee_info$id
[1] "1"
$employee_info$name
[1] "Arpita"
$employee_info$salary
[1] "762"
$employee_info$date
[1] "1/1/2012"
$employee_info$dept
[1] "IT"
$employee_info
$employee_info$id
[1] "1"
$employee_info$name
[1] "Vaishali"
$employee_info$salary
[1] "882"
$employee_info$date
[1] "1/1/2012"
$employee_info$dept
[1] "IT"
$employee_info
$employee_info$id
[1] "1"
$employee_info$name
[1] "Anisha"
$employee_info$salary



[1] "783"
$employee_info$date
[1] "1/1/2012"
$employee_info$dept
[1] "IT"
$employee_info
$employee_info$id
[1] "1"
$employee_info$name
[1] "Ginni"
$employee_info$salary
[1] "964"
$employee_info$date
[1] "1/1/2012"
$employee_info$dept
[1] "IT"

# To download file to the current working directory
download.file("https://www.w3schools.com/xml/simple.xml", "breakfast.xml")
# Install XML package
install.packages("XML")
 # To load library
library(XML)
# Giving the input file name to the function. 
doc <- xmlParse("breakfast.xml")
print(doc)
#Converting the data into list  
xml_data <-xmlToList(doc)
print(xml_data)
xmldataframe <- xmlToDataFrame("breakfast.xml")
xmldataframe

Output:
library(XML)
> doc <- xmlParse("breakfast.xml")
> print(doc)
<?xml version="1.0" encoding="UTF-8"?>
<breakfast_menu>
  <food>
    <name>Belgian Waffles</name>
    <price>$5.95</price>
    <description>Two of our famous Belgian Waffles with plenty of real maple syrup</description>
    <calories>650</calories>
  </food>
  <food>
    <name>Strawberry Belgian Waffles</name>
    <price>$7.95</price>
    <description>Light Belgian waffles covered with strawberries and whipped cream</description>
    <calories>900</calories>
  </food>
  <food>
    <name>Berry-Berry Belgian Waffles</name>
    <price>$8.95</price>
    <description>Light Belgian waffles covered with an assortment of fresh berries and whipped 
cream</description>
    <calories>900</calories>



  </food>
  <food>
    <name>French Toast</name>
    <price>$4.50</price>
    <description>Thick slices made from our homemade sourdough bread</description>
    <calories>600</calories>
  </food>
  <food>
    <name>Homestyle Breakfast</name>
    <price>$6.95</price>
    <description>Two eggs, bacon or sausage, toast, and our ever-popular hash 
browns</description>
    <calories>950</calories>
  </food>
</breakfast_menu>
 
> xml_data <-xmlToList(doc)
> print(xml_data)
$food
$food$name
[1] "Belgian Waffles"
$food$price
[1] "$5.95"
$food$description
[1] "Two of our famous Belgian Waffles with plenty of real maple syrup"
$food$calories
[1] "650"
$food
$food$name
[1] "Strawberry Belgian Waffles"
$food$price
[1] "$7.95"
$food$description
[1] "Light Belgian waffles covered with strawberries and whipped cream"
$food$calories
[1] "900"
$food
$food$name
[1] "Berry-Berry Belgian Waffles"
$food$price
[1] "$8.95"
$food$description
[1] "Light Belgian waffles covered with an assortment of fresh berries and whipped cream"
$food$calories
[1] "900"
$food
$food$name
[1] "French Toast"
$food$price
[1] "$4.50"
$food$description
[1] "Thick slices made from our homemade sourdough bread"
$food$calories
[1] "600"
$food



$food$name
[1] "Homestyle Breakfast"
$food$price
[1] "$6.95"
$food$description
[1] "Two eggs, bacon or sausage, toast, and our ever-popular hash browns"
$food$calories
[1] "950"

VIVA QUESTIONS

1. Give any five features of R.
1. Simple and effective programming language.
2. It is a data analysis software.
3. It gives effective storage facility and data handling.
4. It gives high extensible graphical techniques.
5. It is an interpreted language.

2. Differentiate between R and Python in terms of functionality?
For data analysis, R has inbuilt functionality, but in Python, the data analysis functionalities are not 
inbuilt. They are available by packages like Pandas and Numpy.
3. What are the applications of R?
There are various applications available in real-time. These applications are as follows:
Facebook, Google, Twitter, HRDAG, NDAA
4.  Explain what is R?
R is data analysis software which is used by analysts, quants, statisticians, data scientists and 
others.
5. How can you save your data in R?
To save data in R, there are many ways, but the easiest way of doing this is
Go to Data > Active Data Set > Export Active Data Set and a dialogue box will appear, when you 
click ok the dialogue box let you save your data in the usual way.



Week-8

(a) Implement R script to create a Pie chart, Bar chart, scatter plot and Histogram.
      (Introduction to ggplot2 graphics)
(b) Implement R script to perform mean, median, mode, range, summary, variance, standard 
     deviation operations.
8(a) Implement R script to create a Pie chart, Bar chart, scatter plot and Histogram.
      (Introduction to ggplot2 graphics)
R Data Visualization
Data visualization is an efficient technique for gaining insight about data through a visual medium. 
With the help of visualization techniques, a human can easily obtain information about hidden 
patterns in data that might be neglected.
By using the data visualization technique, we can work with large datasets to efficiently obtain key 
insights about it.
Standard Graphics
R standard graphics are available through package graphics, include several functions which 
provide statistical plots, like:
 Scatterplots
 Piecharts
 Boxplots
 Barplots etc.

Scatterplots
R Scatterplots
The scatter plots are used to compare variables. A comparison between variables is required when 
we need to define how much one variable is affected by another variable. 
In a scatterplot, the data is represented as a collection of points. Each point on the scatterplot 
defines the values of the two variables. One variable is selected for the vertical axis and other for 
the horizontal axis. 
In R, there are two ways of creating scatterplot, i.e., using plot() function and using the ggplot2 
package's functions.
There is the following syntax for creating scatterplot in R:
plot(x, y, main, xlab, ylab, xlim, ylim, axes)  
Here,
S.N
o

Parameter
s

Description

1. x It is the dataset whose values are the horizontal coordinates.
2. y It is the dataset whose values are the vertical coordinates.
3. main It is the title of the graph.
4. xlab It is the label on the horizontal axis.
5. ylab It is the label on the vertical axis.
6. xlim It is the limits of the x values which is used for plotting.
7. ylim It is the limits of the values of y, which is used for plotting.
8. axes It indicates whether both axes should be drawn on the plot.
Example
Program:
#Fetching two columns from mtcars  
data <-mtcars[, c('wt','mpg')]  
# Giving a name to the chart file.  
png(file = "scatterplot.png")  
# Plotting the chart for cars with weight between 2.5 to 5 and mileage between 15 and 30.  
plot(x = data$wt,y = data$mpg, xlab = "Weight", ylab = "Milage", xlim = c(2.5,5), 
        ylim = c(15,30), main = "Weight v/sMilage")  
# Saving the file.  
dev.off() 



Output:

Scatterplot using ggplot2
In R, there is another way for creating scatterplot i.e. with the help of ggplot2 package.
The ggplot2 package provides ggplot() and geom_point() function for creating a scatterplot. The 
ggplot() function takes a series of the input item. The first parameter is an input vector, and the 
second is the aes() function in which we add the x-axis and y-axis.
Program:
#Loading ggplot2 package  
library(ggplot2)  
# Giving a name to the chart file.  
png(file = "scatterplot_ggplot.png")  
# Plotting the chart using ggplot() and geom_point() functions.  
ggplot(mtcars,aes(x = drat, y = mpg)) +geom_point()  
# Saving the file.  
dev.off()
Output:

R Pie Charts



R programming language has several libraries for creating charts and graphs. A pie-chart is a 
representation of values in the form of slices of a circle with different colors. Slices are labeled with 
a description, and the numbers corresponding to each slice are also shown in the chart. However, 
pie charts are not recommended in the R documentation, and their characteristics are limited. 
The Pie charts are created with the help of pie () function, which takes positive numbers as vector 
input. Additional parameters are used to control labels, colors, titles, etc.
There is the following syntax of the pie() function:
pie(X, Labels, Radius, Main, Col, Clockwise)  
Here,

1. X is a vector that contains the numeric values used in the pie chart.
2. Labels are used to give the description to the slices.
3. Radius describes the radius of the pie chart.
4. Main describes the title of the chart.
5. Col defines the color palette.
6. Clockwise is a logical value that indicates the clockwise or anti-clockwise direction in 

which slices are drawn.
Program:
# Creating data for the graph.  
x <- c(20, 65, 15, 50)  
print(x)
labels <- c("India", "America", "Shri Lanka", "Nepal") 
print(labels)
# Giving the chart file a name.  
png(file = "Country.jpg")
# Plotting the chart.  
pie(x,labels)  
# Saving the file.  
dev.off()

Output:

Title and color
A pie chart has several more features that we can use by adding more parameters to the pie() 
function. We can give a title to our pie chart by passing the main parameter. It tells the title of the 
pie chart to the pie() function. Apart from this, we can use a rainbow colour pallet while drawing 
the chart by passing the col parameter.

Program:



# Creating data for the graph.  
x <- c(20, 65, 15, 50)  
labels <- c("India", "America", "Shri Lanka", "Nepal")  
# Giving the chart file a name.  
png(file = "title_color.jpg")  
# Plotting the chart.  
pie(x,labels,main="Country Pie chart",col=rainbow(length(x)))  
# Saving the file.  
dev.off()

Output:

Slice Percentage & Chart Legend
There are two additional properties of the pie chart, i.e., slice percentage and chart legend. We can 
show the data in the form of percentage as well as we can add legends to plots in R by using the 
legend() function. There is the following syntax of the legend() function.
legend(x,y=NULL,legend,fill,col,bg)  
Here,
 x and y are the coordinates to be used to position the legend.
 legend is the text of legend
 fill is the color to use for filling the boxes beside the legend text.
 col defines the color of line and points besides the legend text.
 bg is the background color for the legend box.

Program:
# Creating data for the graph.  
x <- c(20, 65, 15, 50)  
labels <- c("India", "America", "Shri Lanka", "Nepal")  
pie_percent<- round(100*x/sum(x), 1)  
# Giving the chart file a name.  
png(file = "per_pie.jpg")  
# Plotting the chart.  
pie(x, labels = pie_percent, main = "Country Pie Chart",col = rainbow(length(x)))  
legend("topright", c("India", "America", "Shri Lanka", "Nepal"), cex = 0.8,  
           fill = rainbow(length(x)))  
#Saving the file.  
dev.off()



Output:

Dimensional Pie Chart
In R, we can also create a three-dimensional pie chart. For this purpose, R provides a plotrix 
package whose pie3D() function is used to create an attractive 3D pie chart. The parameters of 
pie3D() function remain same as pie() function.

Program:
# Getting the library.  
library(plotrix)  
# Creating data for the graph.  
x <- c(20, 65, 15, 50,45)  
labels <- c("India", "America", "Shri Lanka", "Nepal","Bhutan")  
pie_percent<- round(100*x/sum(x), 1)  
# Giving the chart file a name.  
png(file = "three_D_pie.jpg")  
# Plotting the chart.  
pie3D(x, labels = pie_percent, main = "Country Pie Chart",col = rainbow(length(x)))  
legend("topright", c("India", "America", "Shri Lanka", "Nepal","Bhutan"), cex = 0.8,  
            fill = rainbow(length(x)))  
#Saving the file.  
dev.off()
Output:

R Boxplot



Boxplots are a measure of how well data is distributed across a data set. This divides the data set 
into three quartiles. This graph represents the minimum, maximum, average, first quartile, and the 
third quartile in the data set. Boxplot is also useful in comparing the distribution of data in a data set 
by drawing a boxplot for each of them.
R provides a boxplot() function to create a boxplot. There is the following syntax of boxplot() 
function:

boxplot(x, data, notch, varwidth, names, main)  
Here,
S.N
o

Paramete
r

Description

1. x It is a vector or a formula.
2. data It is the data frame.
3. notch It is a logical value set as true to draw a notch.
4. varwidth It is also a logical value set as true to draw the width of the box same as the 

sample size.
5. names It is the group of labels that will be printed under each boxplot.
6. main It is used to give a title to the graph.

In the below example, we will use the "mtcars" dataset present in the R environment. We will use 
its two columns only, i.e., "mpg" and "cyl". The below example will create a boxplot graph for the 
relation between mpg and cyl, i.e., miles per gallon and number of cylinders, respectively.
Program:
# Giving a name to the chart file.  
png(file = "boxplot.png")  
# Plotting the chart.  
boxplot(mpg ~ cyl, data = mtcars, xlab = "Quantity of Cylinders",  
              ylab = "Miles Per Gallon", main = "R Boxplot Example")  
# Save the file.  
dev.off()
Output:

Boxplot using notch
In R, we can draw a boxplot using a notch. It helps us to find out how the medians of different data 
groups match with each other. Let's see an example to understand how a boxplot graph is created 
using notch for each of the groups
Program:

# Giving a name to our chart.  



png(file = "boxplot_using_notch.png")  
# Plotting the chart.  
boxplot(mpg ~ cyl, data = mtcars,   
        xlab = "Quantity of Cylinders",  
        ylab = "Miles Per Gallon",   
        main = "Boxplot Example",  
        notch = TRUE,   
        varwidth = TRUE,   
        ccol = c("green","yellow","red"),  
        names = c("High","Medium","Low")  
)  
# Saving the file.  
dev.off()  

Output:

R Bar Charts
A bar chart is a pictorial representation in which numerical values of variables are represented by 
length or height of lines or rectangles of equal width. A bar chart is used for summarizing a set of 
categorical data. In bar chart, the data is shown through rectangular bars having the length of the 
bar proportional to the value of the variable.
In R, we can create a bar chart to visualize the data in an efficient manner. For this purpose, R 
provides the barplot() function, which has the following syntax:
barplot(h,x,y,main, names.arg,col)  
Here, 
S.N
o

Parameter Description

1. H A vector or matrix which contains numeric values used in the bar chart.
2. xlab A label for the x-axis.
3. ylab A label for the y-axis.
4. main A title of the bar chart.
5. names.arg A vector of names that appear under each bar.
6. col It is used to give colors to the bars in the graph.

Program:
# Creating the data for Bar chart  
H<- c(12,35,54,3,41)  
# Giving the chart file a name  
png(file = "bar_chart.png")  
# Plotting the bar chart   
barplot(H)  
# Saving the file  
dev.off()



Output:

Labels, Title & Colors
Like pie charts, we can also add more functionalities in the bar chart by-passing more arguments in 
the barplot() functions. We can add a title in our bar chart or can add colors to the bar by adding the 
main and col parameters, respectively. We can add another parameter i.e., args.name, which is a 
vector that has the same number of values, which are fed as the input vector to describe the 
meaning of each bar.
Program:
# Creating the data for Bar chart  
H <- c(12,35,54,3,41)  
M<- c("Feb","Mar","Apr","May","Jun")  

# Giving the chart file a name  
png(file = "bar_properties.png")  

# Plotting the bar chart   
barplot(H,names.arg=M,xlab="Month",ylab="Revenue",col="Green",  
            main="Revenue Bar chart",border="red")  
# Saving the file  
dev.off()
Output:

Additional Lab Experiments:
R Histogram
A histogram is a type of bar chart which shows the frequency of the number of values which are 
compared with a set of values ranges. The histogram is used for the distribution, whereas a bar chart 



is used for comparing different entities. In the histogram, each bar represents the height of the 
number of values present in the given range.
For creating a histogram, R provides hist() function, which takes a vector as an input and uses more 
parameters to add more functionality. There is the following syntax of hist() function:

hist(v,main,xlab,ylab,xlim,ylim,breaks,col,border)  
Here,
S.No Parameter Description

1. v It is a vector that contains numeric values.
2. main It indicates the title of the chart.
3. col It is used to set the color of the bars.
4. border It is used to set the border color of each bar.
5. xlab It is used to describe the x-axis.
6. ylab It is used to describe the y-axis.
7. xlim It is used to specify the range of values on the x-axis.
8. ylim It is used to specify the range of values on the y-axis.
9. breaks It is used to mention the width of each bar.

Program:
# Creating data for the graph.  
v <-  c(12,24,16,38,21,13,55,17,39,10,60)  
# Giving a name to the chart file.  
png(file = "histogram_chart.png")  
# Creating the histogram.  
hist(v,xlab = "Weight",ylab="Frequency",col = "green",border = "red")  
# Saving the file.  
dev.off()
Output:

R Line Graphs
A line graph is a pictorial representation of information which changes continuously over time. A 
line graph can also be referred to as a line chart. Within a line graph, there are points connecting the 
data to show the continuous change. The lines in a line graph can move up and down based on the 
data. We can use a line graph to compare different events, information, and situations.
A line chart is used to connect a series of points by drawing line segments between them. Line 
charts are used in identifying the trends in data. For line graph construction, R provides plot() 
function, which has the following syntax:
plot(v,type,col,xlab,ylab)  
Here,
S.N
o

Paramete
r

Description

1. v It is a vector which contains the numeric values.
2. type This parameter takes the value? I? to draw only the lines or? p? to 

draw only the points and "o" to draw both lines and points.
3. xlab It is the label for the x-axis.
4. ylab It is the label for the y-axis.
5. main It is the title of the chart.



6. col It is used to give the color for both the points and lines
Program:
# Creating the data for the chart.  
v <- c(13,22,28,7,31)  
# Giving a name to the chart file.  
png(file = "line_graph.jpg")  
# Plotting the bar chart.   
plot(v,type = "o")  
# Saving the file.  
dev.off()
Output:

Line Chart Title, Color, and Labels
Like other graphs and charts, in line chart, we can add more features by adding more parameters. 
We can add the colors to the lines and points, add labels to the axis, and can give a title to the chart. 
Program:
# Creating the data for the chart.  
v <- c(13,22,28,7,31)  
# Giving a name to the chart file.  
png(file = "line_graph_feature.jpg")  
# Plotting the bar chart.   
plot(v,type = "o",col="green",xlab="Month",ylab="Temperature")  
# Saving the file.  
dev.off()
Output:



8(b) Implement R Script to perform mean, median, mode, range, summary, variance, 
        standard deviation operations.
In the descriptive analysis, we describe our data in some manner and present it in a meaningful 
way so that it can be easily understood. Most of the time it is performed on small data sets and 
this analysis helps us a lot to predict some future trends based on the current findings. Some 
measures that are used to describe a data set are measures of central tendency and measures of 
variability or dispersion.

Process of Descriptive Analysis
 Measure of central tendency
 Measure of variability

Measure of central tendency
It represents the whole set of data by single value.It gives us the location of central points. There 
are three main measures of central tendency:
 Mean
 Mode
 Median

Measure of variability
Measure of variability is known as the spread of data or how well is our data is distributed. The 
most common variability measures are:
Mean
It is calculated by taking the sum of the values and dividing with the number of values in a data 
series.
The function mean() is used to calculate this in R.
Syntax
The basic syntax for calculating mean in R is −
mean(x, trim = 0, na.rm = FALSE, ...)
Following is the description of the parameters used −

 x is the input vector.
 trim is used to drop some observations from both end of the sorted vector.
 na.rm is used to remove the missing values from the input vector.

Example:
# Create a vector.
x <- c(12,7,3,4.2,18,2,54,-21,8,-5)
# Find Mean.
result.mean <-  mean(x,trim = 0.3)
print(result.mean)
Output:
[1] 5.55



Median
The middle most value in a data series is called the median. The median() function is used in R to 
calculate this value.
Syntax
The basic syntax for calculating median in R is −
median(x, na.rm = FALSE)
Following is the description of the parameters used −

 x is the input vector.
 na.rm is used to remove the missing values from the input vector.

Example
# Create the vector.
x <- c(12,7,3,4.2,18,2,54,-21,8,-5)

# Find the median.
median.result <- median(x)
print(median.result)
Output:
[1] 5.6

Mode
The mode is the value that has highest number of occurrences in a set of data. Unike mean and 
median, mode can have both numeric and character data.
R does not have a standard in-built function to calculate mode. So we create a user function to 
calculate mode of a data set in R. This function takes the vector as input and gives the mode value 
as output.
Example

# Create the function.
getmode <- function(v) {
  uniqv <- unique(v)
  uniqv[which.max(tabulate(match(v, uniqv)))]
}
# Create the vector with numbers.
v <- c(2,1,2,3,1,2,3,4,1,5,5,3,2,3)

# Calculate the mode using the user function.
result <- getmode(v)
print(result)

# Create the vector with characters.
charv <- c("o","it","the","it","it")

# Calculate the mode using the user function.
result <- getmode(charv)
print(result)
Output:
[1] 2
[1] "it"
Measures of Variability
Following are some of the measures of variability that R offers to differentiate between data sets:
 Variance
 Standard Deviation
 Range
 Mean Deviation
 Interquartile Range



Population vs sample variance
Different formulas are used for calculating variance depending on whether you have data from a 
whole population or a sample.
Population variance
When you have collected data from every member of the population that you’re interested in, you 
can get an exact value for population variance.
The population variance formula looks like this:
Formula Explanation

 σ2 = population variance
 Σ = sum of…
 Χ = each value
 μ = population mean
 Ν = number of values in the population

Sample variance
When you collect data from a sample, the sample variance is used to make estimates 
or inferences about the population variance.
The sample variance formula looks like this:
Formula Explanation

 s2 = sample variance
 Σ = sum of…
 Χ = each value
 x̄ = sample mean
 n = number of values in the sample

With samples, we use n – 1 in the formula because using n would give us a biased estimate that 
consistently underestimates variability. The sample variance would tend to be lower than the real 
variance of the population.
Reducing the sample n to n – 1 makes the variance artificially large, giving you an unbiased 
estimate of variability: it is better to overestimate rather than underestimate variability in samples.
Variance 
 The variance is a measure of variability. It is calculated by taking the average of squared 

deviations from the mean.
 Variance tells you the degree of spread in your data set. The more spread the data, the larger 

the variance is in relation to the mean.
Steps for calculating the variance
The variance is usually calculated automatically by whichever software you use for your statistical 
analysis. But you can also calculate it by hand to better understand how the formula works.
There are five main steps for finding the variance by hand. We’ll use a small data set of 6 scores to 
walk through the steps.

Data set
46 69 32 60 52 41

Step 1: Find the mean
To find the mean, add up all the scores, then divide them by the number of scores.

Mean (x̅)

x̅ = (46 + 69 + 32 + 60 + 52 + 41) ÷ 6 = 50

Step 2: Find each score’s deviation from the mean
Subtract the mean from each score to get the deviations from the mean.
Since x̅ = 50, take away 50 from each score.

https://www.scribbr.com/methodology/population-vs-sample/


Score Deviation from the mean
46 46 – 50 = -4
69 69 – 50 = 19
32 32 – 50 = -18
60 60 – 50 = 10
52 52 – 50 = 2
41 41 – 50 = -9

Step 3: Square each deviation from the mean
Multiply each deviation from the mean by itself. This will result in positive numbers.

Squared deviations from the mean
(-4)2 = 4 × 4 = 16
192 = 19 × 19 = 361
(-18)2 = -18 × -18 = 324
102 = 10 × 10 = 100
22 = 2 × 2 = 4
(-9)2 = -9 × -9 = 81

Step 4: Find the sum of squares
Add up all of the squared deviations. This is called the sum of squares.

Sum of squares
16 + 361 + 324 + 100 + 4 + 81 = 886

Step 5: Divide the sum of squares by n – 1 or N
Divide the sum of the squares by n – 1 (for a sample) or N (for a population).
Since we’re working with a sample, we’ll use n – 1, where n = 6.

Variance
 886 ÷ (6 – 1) = 886 ÷ 5 = 177.2

Example:
# Defining vector
x <- c(46, 69, 32, 60, 52, 41)
# Print variance of x
print(var(x))

Output:
[1] 177.2

Range:
In statistics, the range is the spread of your data from the lowest to the highest value in the 
distribution. It is a commonly used measure of variability.

The range is calculated by subtracting the lowest value from the highest value. While a large range 
means high variability, a small range means low variability in a distribution.

Calculate the range
The formula to calculate the range is:

 R = range
 H = highest value
 L = lowest value

The range is the easiest measure of variability to calculate. 
To find the range, follow these steps:

1. Order all values in your data set from low to high.
2. Subtract the lowest value from the highest value.



This process is the same regardless of whether your values are positive or negative, or whole 
numbers or fractions.
Range example
Your data set is the ages of 8 participants.

Participant 1 2 3 4 5 6 7 8
Age 37 19 31 29 21 26 33 36

First, order the values from low to high to identify the lowest value (L) and the highest value (H).

Age 19 21 26 29 31 33 36 37

Then subtract the lowest from the highest value.
R = H – L

R = 37 – 19 = 18
The range of our data set is 18 years.

How useful is the range?
The range generally gives you a good indicator of variability when you have a distribution without 
extreme values. When paired with measures of central tendency, the range can tell you about the 
span of the distribution.
Example:
# Defining vector
x <- c(19, 21, 26, 29, 31, 33, 36, 37)

# range() function output
print(range(x))

# Using max() and min() function
# to calculate the range of data set
print(max(x)-min(x))

Output:
print(range(x))
[1] 19 37

# Using max() and min() function
# To calculate the range of data set
print(max(x)-min(x))
[1] 18

Standard Deviation
 The standard deviation is the average amount of variability in your dataset. It tells you, on 

average, how far each value lies from the mean.
 A high standard deviation means that values are generally far from the mean, while a low 

standard deviation indicates that values are clustered close to the mean.
What does standard deviation tell you?
Standard deviation is a useful measure of spread for normal distributions.
In normal distributions, data is symmetrically distributed with no skew. Most values cluster around 
a central region, with values tapering off as they go further away from the center. The standard 
deviation tells you how spread out from the center of the distribution your data is on average.
Many scientific variables follow normal distributions, including height, standardized test scores, or 
job satisfaction ratings. When you have the standard deviations of different samples, you can 

https://www.scribbr.com/statistics/normal-distribution/
https://www.scribbr.com/statistics/normal-distribution/


compare their distributions using statistical tests to make inferences about the larger populations 
they came from.
Standard deviation formulas for populations and samples
Different formulas are used for calculating standard deviations depending on whether you have data 
from a whole population or a sample.
Population standard deviation
When you have collected data from every member of the population that you’re interested in, you 
can get an exact value for population standard deviation.

The population standard deviation formula looks like this:
Formula Explanation

 σ = population standard deviation
 ∑ = sum of…
 X = each value
 μ = population mean
 N = number of values in the population

Sample standard deviation
When you collect data from a sample, the sample standard deviation is used to make estimates 
or inferences about the population standard deviation.
The sample standard deviation formula looks like this:
Formula Explanation

 s = sample standard deviation
 ∑ = sum of…
 X = each value
 x̅ = sample mean
 n = number of values in the sample

With samples, we use n – 1 in the formula because using n would give us a biased estimate that 
consistently underestimates variability. 
The sample standard deviation would tend to be lower than the real standard deviation of the 
population.
Reducing the sample n to n – 1 makes the standard deviation artificially large, giving you a 
conservative estimate of variability.

Steps for calculating the standard deviation
The standard deviation is usually calculated automatically by whichever software you use for your 
statistical analysis. But you can also calculate it by hand to better understand how the formula 
works.
There are six main steps for finding the standard deviation by hand. 
We’ll use a small data set of 6 scores to walk through the steps.

Data set
46 69 32 60 52 41

Step 1: Find the mean
To find the mean, add up all the scores, then divide them by the number of scores.

Mean (x̅)
x̅ = (46 + 69 + 32 + 60 + 52 + 41) ÷ 6 = 50

Step 2: Find each score’s deviation from the mean
Subtract the mean from each score to get the deviations from the mean.
Since x̅ = 50, here we take away 50 from each score.



Score Deviation from the mean
46 46 – 50 = -4
69 69 – 50 = 19
32 32 – 50 = -18
60 60 – 50 = 10
52 52 – 50 = 2
41 41 – 50 = -9

Step 3: Square each deviation from the mean
Multiply each deviation from the mean by itself. This will result in positive numbers.

Squared deviations from the mean
(-4)2 = 4 × 4 = 16
192 = 19 × 19 = 361
(-18)2 = -18 × -18 = 324
102 = 10 × 10 = 100
22 = 2 × 2 = 4
(-9)2 = -9 × -9 = 81

Step 4: Find the sum of squares
Add up all of the squared deviations. This is called the sum of squares.

Sum of squares
16 + 361 + 324 + 100 + 4 + 81 = 886

Step 5: Find the variance
Divide the sum of the squares by n – 1 (for a sample) or N (for a population) – this is the variance.
Since we’re working with a sample size of 6, we will use  n – 1, where n = 6.

Variance
 886 ÷ (6 – 1) = 886 ÷ 5 = 177.2

Step 6: Find the square root of the variance
To find the standard deviation, we take the square root of the variance.

Standard deviation
√177.2 = 13.31

From learning that SD = 13.31, we can say that each score deviates from the mean by 13.31 points 
on average.
You can calculate standard deviation in R using the sd() function. This standard deviation function 
is a part of standard R, and needs no extra packages to be calculated.
Example:
# Defining vector
x <- c(46, 69, 32, 60, 52, 41)
# Standard deviation
d <- sqrt(var(x))
# Print standard deviation of x
print(d)

# Use sd() function to calculate Standard Deviation
print(sd(x)) 
Output:
# Print standard deviation of x
   print(d)
[1] 13.31165
# Use sd() function to calculate Standard Deviation
    print(sd(x))
[1] 13.31165

https://www.scribbr.com/methodology/population-vs-sample/
https://www.scribbr.com/statistics/variance/


VIVA QUESTIONS

1. What is Descriptive Statistics?
Descriptive statistics is the branch of statistics that focuses on describing and gaining 
more insight into the data in its present state. It deals with what the data in its current 
state means. It makes the data easier to understand and also gives us knowledge about 
the data which is necessary to perform further analysis. Average measures like mean, 
median, mode, etc. are a good example of descriptive statistics.

2. List various functions used for Summarizing your Data in R
R provides two very simple functions that can instantly summarize our data for us. These 
are the str() and the summary() functions.

3. Point out the correct statement?
a) Character strings are entered using either matching double (“) or single (‘) quotes
b) Character vectors may be concatenated into a vector by the c() function
c) Subsets of the elements of a vector may be selected by appending to the name of the 
vector an index vector in square brackets
d) All of the mentioned
Explanation: Character quantities and character vectors are used frequently in R.

4. What will be the output of the following R code?
> x <- c(1, 2, NaN, NA, 4)
> is.na(x)
a) FALSE FALSE TRUE TRUE FALSE
b) FALSE TRUE TRUE TRUE FALSE
c) TRUE FALSE TRUE TRUE FALSE
d) TRUE FALSE TRUE FALSE FALSE
Answer: a
Explanation: Missing values are denoted by NA or NaN for q undefined mathematical 
operations.

5. Lists can be created using the _______ function.
    a) Matrix.li       b) Matrix.lists        
    c) Lists.matric       d) List
Explanation: Lists can be created using the list function. Like data frames, they can 
incorporate a mixture of modes into the one list and each component can be of a different 
length or size.

Week 9

 a) Implement R Script to perform Normal, Binomial distributions.



 b) Implement R Script to perform correlation, Linear and multiple regression.

9 (a) Implement R Script to perform Normal, Binomial distributions.
R Normal Distribution
In random collections of data from independent sources, it is commonly seen that the distribution of 
data is normal. It means that if we plot a graph with the value of the variable in the horizontal axis 
and counting the values in the vertical axis, then we get a bell shape curve. The curve center 
represents the mean of the data set. In the graph, fifty percent of the value is located to the left of 
the mean. And the other fifty percent to the right of the graph. This is referred to as the normal 
distribution.
R allows us to generate normal distribution by providing the following functions:

This function can have the following parameters:
S.N
o

Paramete
r

Description

1. x It is a vector of numbers.
2. p It is a vector of probabilities.
3. n It is a vector of observations.
4. mean It is the mean value of the sample data whose default value is zero.
5. sd It is the standard deviation whose default value is 1.

Let's start understanding how these functions are used with the help of the examples.
dnorm():Density
The dnorm() function of R calculates the height of the probability distribution at each point for a 
given mean and standard deviation. The probability density of the normal distribution is:

Example
# Creating a sequence of numbers between -1 and 20 incrementing by 0.2.  
x <- seq(-1, 20, by = .2)  
# Choosing the mean as 2.0 and standard deviation as 0.5.  
y <- dnorm(x, mean = 2.0, sd = 0.5)  
# Giving a name to the chart file.  
png(file = "dnorm.png")  
#Plotting the graph  
plot(x,y)  
# Saving the file.  
dev.off()  
Output:

pnorm():Direct Look-Up
The dnorm() function is also known as "Cumulative Distribution Function". This function 
calculates the probability of a normally distributed random numbers, which is less than the value of 
a given number. The cumulative distribution is as follows:



f(x)=P(X≤x)
Example:
# Creating a sequence of numbers between -1 and 20 incrementing by 0.2.  
x <- seq(-1, 20, by = .1)  
# Choosing the mean as 2.0 and standard deviation as 0.5.  
y <- pnorm(x, mean = 2.0, sd = 0.5)  
# Giving a name to the chart file.  
png(file = "pnorm.png")  
#Plotting the graph  
plot(x,y)  
# Saving the file.  
dev.off()  
Output:

qnorm():Inverse Look-Up
The qnorm() function takes the probability value as an input and calculates a number whose 
cumulative value matches with the probability value. The cumulative distribution function and the 
inverse cumulative distribution function are related by

p=f(x)
x=f-1 (p)

Example:
# Creating a sequence of numbers between -1 and 20 incrementing by 0.2.  
x <- seq(0, 1, by = .01)  
# Choosing the mean as 2.0 and standard deviation as 0.5.  
y <- qnorm(x, mean = 2.0, sd = 0.5)  
# Giving a name to the chart file.  
png(file = "qnorm.png")  
#Plotting the graph  
plot(y,x)  
# Saving the file.  
dev.off()  
Output:

rnorm():Random variates
The rnorm() function is used for generating normally distributed random numbers. This function 
generates random numbers by taking the sample size as an input. Let's see an example in which we 
draw a histogram for showing the distribution of the generated numbers.



Example:
# Creating a sequence of numbers between -1 and 20 incrementing by 0.2.  
x <- rnorm(1500, mean=80,  sd=15 )  
# Giving a name to the chart file.  
png(file = "rnorm.png")  
#Creating histogram  
hist(x,probability =TRUE,col="red",border="black")  
# Saving the file.  
dev.off()  
Output:

Binomial Distribution
The binomial distribution is also known as discrete probability distribution, which is used to find 
the probability of success of an event. The event has only two possible outcomes in a series of 
experiments. The tossing of the coin is the best example of the binomial distribution. When a coin 
is tossed, it gives either a head or a tail. The probability of finding exactly three heads in repeatedly 
tossing the coin ten times is approximate during the binomial distribution.
R allows us to create binomial distribution by providing the following function:

This function can have the following parameters:
S.No Parameter Description

1. x It is a vector of numbers.

2. p It is a vector of probabilities.

3. n It is a vector of observations.

4. size It is the number of trials.

5. prob It is the probability of the success of each trial.

Let's start understanding how these functions are used with the help of the examples
dbinom(): Direct Look-Up, Points
The dbinom() function of R calculates the probability density distribution at each point. In simple 
words, it calculates the density function of the particular binomial distribution.
Example
# Creating a sample of 100 numbers which are incremented by 1.5.  
x <- seq(0,100,by = 1)  
# Creating the binomial distribution.  
y <- dbinom(x,50,0.5)  
# Giving a name to the chart file.  



png(file = "dbinom.png")  
# Plotting the graph.  
plot(x,y)  
# Saving the file.  
dev.off()  
Output:

pbinom():Direct Look-Up, Intervals
The dbinom() function of R calculates the cumulative probability(a single value representing the 
probability) of an event. In simple words, it calculates the cumulative distribution function of the 
particular binomial distribution.

Example
# Probability of getting 20 or fewer heads from 48 tosses of a coin.  
x <- pbinom(20,48,0.5)  
#Showing output  
print(x)  
Output:
[1] 0.1561634
qbinom(): Inverse Look-Up
The qbinom() function of R takes the probability value and generates a number whose cumulative 
value matches with the probability value. In simple words, it calculates the inverse cumulative 
distribution function of the binomial distribution.
Let's find the number of heads that have a probability of 0.45 when a coin is tossed 51 times.
Example
# Finding number of heads with the  help of qbinom() function   
x <- qbinom(0.45,48,0.5)  
#Showing output  
print(x)
Output:
[1] 24
rbinom()
The rbinom() function of R is used to generate required number of random values for given 
probability from a given sample.
Let's see an example in which we find nine random values from a sample of 160 with a probability 
of 0.5.
Example:
# Finding random values    
x <- rbinom(9,160,0.5)  
#Showing output  
print(x)  

Output:
[1] 94 74 83 81 78 84 77 78 81

9(b) Implement R Script to perform correlation, Linear and multiple regression.
A step-by-step guide to linear regression in R



Linear regression is a regression model that uses a straight line to describe the relationship 
between variables. It finds the line of best fit through your data by searching for the value of the 
regression coefficient(s) that minimizes the total error of the model.
There are two main types of linear regression:
 Simple linear regression uses only one independent variable
 Multiple linear regression uses two or more independent variables

In this step-by-step guide, we will walk you through linear regression in R using two sample 
datasets.
Simple linear regression: 
The first dataset contains observations about income (in a range of $15k to $75k) and happiness 
(rated on a scale of 1 to 10) in an imaginary sample of 500 people. The income values are divided 
by 10,000 to make the income data match the scale of the happiness scores (so a value of $2 
represents $20,000, $3 is $30,000, etc.)
Multiple linear regression: 
The second dataset contains observations on the percentage of people biking to work each day, the 
percentage of people smoking, and the percentage of people with heart disease in an imaginary 
sample of 500 towns.

To install the packages, you need for the analysis, run this code:
install.packages("ggplot2")
install.packages("dplyr")
install.packages("broom")
install.packages("ggpubr")
Next, load the packages into your R environment by running this code:
library(ggplot2)
library(dplyr)
library(broom)
library(ggpubr)

Step 1: Load the data into R
Follow these four steps for each dataset:

1. In RStudio, go to File > Import dataset > From Text (base).
2. Choose the data file you have downloaded (income.data or heart.data), and an Import 

Dataset window pops up.
3. In the Data Frame window, you should see an X (index) column and columns listing the 

data for each of the variables (income and happiness or biking, smoking, and heart.disease).
4. Click on the Import button and the file should appear in your Environment tab on the 

upper right side of the RStudio screen.
After you’ve loaded the data, check that it has been read in correctly using summary().

Simple regression
summary(income.data)
 Because both our variables are quantitative, when we run this function, we see a table in our 

console with a numeric summary of the data. This tells us the minimum, median, mean, and 
maximum values of the independent variable (income) and dependent variable (happiness):

Multiple regression
summary(heart.data)
 Again, because the variables are quantitative, running the code produces a numeric 

summary of the data for the independent variables (smoking and biking) and the dependent 
variable (heart disease):



Step 2: Make sure your data meet the assumptions
We can use R to check that our data meet the four main assumptions for linear regression.
Simple regression

1. Independence of observations (aka no autocorrelation)
Because we only have one independent variable and one dependent variable, we don’t need to test 
for any hidden relationships among variables.
If you know that you have autocorrelation within variables (i.e. multiple observations of the same 
test subject), then do not proceed with a simple linear regression! Use a structured model, like a 
linear mixed-effects model, instead.

2. Normality
To check whether the dependent variable follows a normal distribution, use the hist() function.
hist(income.data$happiness)

The observations are roughly bell-shaped (more observations in the middle of the distribution, 
fewer on the tails), so we can proceed with the linear regression.

3. Linearity
The relationship between the independent and dependent variable must be linear. We can test this 
visually with a scatter plot to see if the distribution of data points could be described with a straight 
line.
plot(happiness ~ income, data = income.data)

The relationship looks roughly linear, so we can proceed with the linear model.
4. Homoscedasticity (aka homogeneity of variance)

This means that the prediction error doesn’t change significantly over the range of prediction of the 
model. We can test this assumption later, after fitting the linear model.
Multiple regression

1. Independence of observations (aka no autocorrelation)
Use the cor() function to test the relationship between your independent variables and make sure 
they aren’t too highly correlated.
cor(heart.data$biking, heart.data$smoking)

https://www.scribbr.com/statistics/normal-distribution/


When we run this code, the output is 0.015. The correlation between biking and smoking is small 
(0.015 is only a 1.5% correlation), so we can include both parameters in our model.

2. Normality
Use the hist() function to test whether your dependent variable follows a normal distribution.
hist(heart.data$heart.disease)

The distribution of observations is roughly bell-shaped, so we can proceed with the linear 
regression.

3. Linearity
We can check this using two scatterplots: one for biking and heart disease, and one for smoking and 
heart disease.
plot(heart.disease ~ biking, data=heart.data)

plot(heart.disease ~ smoking, data=heart.data)

Although the relationship between smoking and heart disease is a bit less clear, it still appears 
linear. We can proceed with linear regression.

4. Homoscedasticity
We will check this after we make the model.

Step 3: Perform the linear regression analysis

https://www.scribbr.com/statistics/normal-distribution/


Now that you’ve determined your data meet the assumptions, you can perform a linear regression 
analysis to evaluate the relationship between the independent and dependent variables.
Simple regression: income and happiness
Let’s see if there’s a linear relationship between income and happiness in our survey of 500 people 
with incomes ranging from $15k to $75k, where happiness is measured on a scale of 1 to 10.
To perform a simple linear regression analysis and check the results, you need to run two lines of 
code. The first line of code makes the linear model, and the second line prints out the summary of 
the model:
income.happiness.lm <- lm(happiness ~ income, data = income.data)
summary(income.happiness.lm)
The output looks like this:

This output table first presents the model equation, then summarizes the model residuals (see step 
4).
The Coefficients section shows:

1. The estimates (Estimate) for the model parameters – the value of the y-intercept (in this 
case 0.204) and the estimated effect of income on happiness (0.713).

2. The standard error of the estimated values (Std. Error).
3. The test statistic (t value, in this case the t-statistic).
4. The p-value ( Pr(>| t | ) ), aka the probability of finding the given t-statistic if the null 

hypothesis of no relationship were true.
The final three lines are model diagnostics – the most important thing to note is the p-value (here it 
is 2.2e-16, or almost zero), which will indicate whether the model fits the data well.
From these results, we can say that there is a significant positive relationship between income and 
happiness (p-value < 0.001), with a 0.713-unit (+/- 0.01) increase in happiness for every unit 
increase in income.

Multiple regression: biking, smoking, and heart disease
Let’s see if there’s a linear relationship between biking to work, smoking, and heart disease in our 
imaginary survey of 500 towns. The rates of biking to work range between 1 and 75%, rates of 
smoking between 0.5 and 30%, and rates of heart disease between 0.5% and 20.5%.
To test the relationship, we first fit a linear model with heart disease as the dependent variable and 
biking and smoking as the independent variables. Run these two lines of code:
heart.disease.lm<-lm(heart.disease ~ biking + smoking, data = heart.data)

summary(heart.disease.lm)
The output looks like this:



The estimated effect of biking on heart disease is -0.2, while the estimated effect of smoking is 
0.178.
This means that for every 1% increase in biking to work, there is a correlated 0.2% decrease in the 
incidence of heart disease. Meanwhile, for every 1% increase in smoking, there is a 0.178% 
increase in the rate of heart disease.
The standard errors for these regression coefficients are very small, and the t-statistics are very 
large (-147 and 50.4, respectively). The p-values reflect these small errors and large t-statistics. For 
both parameters, there is almost zero probability that this effect is due to chance.

Step 4: Check for homoscedasticity
Before proceeding with data visualization, we should make sure that our models fit the 
homoscedasticity assumption of the linear model.
Simple regression
We can run plot(income.happiness.lm) to check whether the observed data meets our model 
assumptions:
par(mfrow=c(2,2))
plot(income.happiness.lm)
par(mfrow=c(1,1))
Note that the par(mfrow()) command will divide the Plots window into the number of rows and 
columns specified in the brackets. So par(mfrow=c(2,2)) divides it up into two rows and two 
columns. To go back to plotting one graph in the entire window, set the parameters again and 
replace the (2,2) with (1,1).
These are the residual plots produced by the code:

Residuals are the unexplained variance. They are not exactly the same as model error, but they are 
calculated from it, so seeing a bias in the residuals would also indicate a bias in the error.
The most important thing to look for is that the red lines representing the mean of the residuals are 
all basically horizontal and centered around zero. This means there are no outliers or biases in the 
data that would make a linear regression invalid.
In the Normal Q-Qplot in the top right, we can see that the real residuals from our model form an 
almost perfectly one-to-one line with the theoretical residuals from a perfect model.
Based on these residuals, we can say that our model meets the assumption of homoscedasticity.
Multiple regression



Again, we should check that our model is actually a good fit for the data, and that we don’t have 
large variation in the model error, by running this code:
par(mfrow=c(2,2))
plot(heart.disease.lm)
par(mfrow=c(1,1))
The output looks like this:

As with our simple regression, the residuals show no bias, so we can say our model fits the 
assumption of homoscedasticity.

Step 5: Visualize the results with a graph
Next, we can plot the data and the regression line from our linear regression model so that the 
results can be shared.
Simple regression
Follow 4 steps to visualize the results of your simple linear regression.

1. Plot the data points on a graph
income.graph<-ggplot(income.data, aes(x=income, y=happiness))+
                     geom_point()
income.graph

2. Add the linear regression line to the plotted data
Add the regression line using geom_smooth() and typing in lm as your method for creating the line. 
This will add the line of the linear regression as well as the standard error of the estimate (in this 
case +/- 0.01) as a light grey stripe surrounding the line:
income.graph <- income.graph + geom_smooth(method="lm", col="black")
income.graph

3. Add the equation for the regression line.



           income.graph <- income.graph +  stat_regline_equation(label.x = 3, label.y = 7)
           income.graph

4. Make the graph ready for publication
We can add some style parameters using theme_bw() and making custom labels using labs().

income.graph +  theme_bw() + labs(title = "Reported happiness as a function of income",
      x = "Income (x$10,000)",
      y = "Happiness score (0 to 10)")
This produces the finished graph that you can include in your papers:
 

Multiple regression
The visualization step for multiple regression is more difficult than for simple regression, because 
we now have two predictors. One option is to plot a plane, but these are difficult to read and not 
often published.
We will try a different method: plotting the relationship between biking and heart disease at 
different levels of smoking. In this example, smoking will be treated as a factor with three levels, 
just for the purposes of displaying the relationships in our data.
There are 7 steps to follow.

1. Create a new dataframe with the information needed to plot the model
Use the function expand.grid() to create a dataframe with the parameters you supply. Within this 
function we will:
 Create a sequence from the lowest to the highest value of your observed biking data;
 Choose the minimum, mean, and maximum values of smoking, in order to make 3 levels of 

smoking over which to predict rates of heart disease.
   plotting.data<-expand.grid(
  biking = seq(min(heart.data$biking), max(heart.data$biking), length.out=30),
    smoking=c(min(heart.data$smoking), mean(heart.data$smoking), max(heart.data$smoking)))
This will not create anything new in your console, but you should see a new data frame appear in 
the Environment tab. Click on it to view it.

2. Predict the values of heart disease based on your linear model



Next we will save our ‘predicted y’ values as a new column in the dataset we just created.
plotting.data$predicted.y <- predict.lm(heart.disease.lm, newdata=plotting.data)

3. Round the smoking numbers to two decimals
  This will make the legend easier to read later on.
plotting.data$smoking <- round(plotting.data$smoking, digits = 2)

4. Change the ‘smoking’ variable into a factor
This allows us to plot the interaction between biking and heart disease at each of the three levels of 
smoking we chose.
plotting.data$smoking <- as.factor(plotting.data$smoking)

5. Plot the original data
heart.plot <- ggplot(heart.data, aes(x=biking, y=heart.disease)) +   geom_point()
heart.plot

6. Add the regression lines
heart.plot <- heart.plot +
geom_line(data=plotting.data, aes(x=biking, y=predicted.y, color=smoking), size=1.25)
heart.plot

7. Make the graph ready for publication
heart.plot <- heart.plot +   theme_bw() +
labs(title = "Rates of heart disease (% of population) \n as a function of biking to work and 
smoking",       x = "Biking to work (% of population)", y = "Heart disease (% of population)",
color = "Smoking \n (% of population)")
heart.plot

Because this graph has two regression coefficients, the stat_regline_equation() function won’t work 
here. But if we want to add our regression model to the graph, we can do so like this:
heart.plot + annotate(geom="text", x=30, y=1.75, label=" = 15 + (-0.2*biking) + 0.178*smoking)")
This is the finished graph that you can include in your papers!



Step 6: Report your results
In addition to the graph, include a brief statement explaining the results of the regression model.
Reporting the results of simple linear regression:
We found a significant relationship between income and happiness (p < 0.001, R2 = 0.73 ± 0.0193), 
with a 0.73-unit increase in reported happiness for every $10,000 increase in income.
Reporting the results of multiple linear regression:
In our survey of 500 towns, we found significant relationships between the frequency of biking to 
work and the frequency of heart disease and the frequency of smoking and frequency of heart 
disease (p < 0 and p<0.001, respectively).
Specifically, we found a 0.2% decrease (± 0.0014) in the frequency of heart disease for every 1% 
increase in biking, and a 0.178% increase (± 0.0035) in the frequency of heart disease for every 1% 
increase in smoking.

What is the use of Linear regression analysis?
Linear regression analysis is used to predict the value of a variable based on the value of 
another variable. The variable you want to predict is called the dependent variable. The variable 
you are using to predict the other variable's value is called the independent variable.

VIVA QUESTIONS

1. Point out the wrong statement?
a) matrices or more generally arrays are multi-dimensional generalizations of vectors
b) factors provide compact ways to handle categorical data
c) vectors provide a convenient way to return the results of a statistical 
computation
d) lists can be explicitly created using the list() function
Explanation: The dimension attribute is itself an integer vector of length 2 (number of 
rows, number of columns).

2. How can you add datasets in R?
rbind () function can be used add datasets in R language provided the columns in the 
datasets should be same.

3. How will you read a .csv file in R language?
read.csv () function is used to read a .csv file in R language. Below is a simple example –
filcontent <-read.csv (sample.csv)
print (filecontent)
4. How to read data from Excel xls or xlsx file formats into R. This can be done either by:
 copying data from Excel
 using readxl package
 or using xlsx package

5. Importing Excel files into R using readxl package
The readxl package, developed by Hadley Wickham, can be used to easily import Excel 
files (xls|xlsx) into R without any external dependencies.
Installing and loading readxl package

 Install
install.packages("readxl")

 Load
library("readxl")

Week 10

Introduction to Non-Tabular Data Types: Time series, spatial data, Network data.



Data Transformations: Converting Numeric Variables into Factors, Date Operations,
String Parsing, Geocoding.
10(a) Working with Non-Tabular Data Types: Time series, spatial data, Network data.
R - Time Series Analysis
Time series is a series of data points in which each data point is associated with a timestamp. A 
simple example is the price of a stock in the stock market at different points of time on a given 
day. Another example is the amount of rainfall in a region at different months of the year. R 
language uses many functions to create, manipulate and plot the time series data. The data for the 
time series is stored in an R object called time-series object. It is also a R data object like a vector 
or data frame.
The time series object is created by using the ts() function.
Syntax
The basic syntax for ts() function in time series analysis is −
timeseries.object.name <-  ts(data, start, end, frequency)
Following is the description of the parameters used −
 data is a vector or matrix containing the values used in the time series.
 start specifies the start time for the first observation in time series.
 end specifies the end time for the last observation in time series.
 frequency specifies the number of observations per unit time.

Except the parameter "data" all other parameters are optional.
Example
Consider the annual rainfall details at a place starting from January 2012. We create an R time 
series object for a period of 12 months and plot it.
# Get the data points in form of a R vector.
rainfall <- c(799,1174.8,865.1,1334.6,635.4,918.5,685.5,998.6,784.2,985,882.8,1071)
# Convert it to a time series object.
rainfall.timeseries <- ts(rainfall,start = c(2012,1),frequency = 12)
# Print the timeseries data.
print(rainfall.timeseries)
# Give the chart file a name.
png(file = "rainfall.png")
# Plot a graph of the time series.
plot(rainfall.timeseries)
# Save the file.
dev.off()
Output:
print(rainfall.timeseries)
        Jan    Feb    Mar    Apr    May    Jun    Jul    Aug    Sep    Oct    Nov    Dec
2012  799.0 1174.8  865.1 1334.6  635.4  918.5  685.5  998.6  784.2  985.0  882.8 1071.0

The Time series chart –

Multiple Time Series
We can plot multiple time series in one chart by combining both the series into a matrix.
# Get the data points in form of a R vector.



rainfall1 <- c(799,1174.8,865.1,1334.6,635.4,918.5,685.5,998.6,784.2,985,882.8,1071)
rainfall2 <- c(655,1306.9,1323.4,1172.2,562.2,824,822.4,1265.5,799.6,1105.6,1106.7,1337.8)
# Convert them to a matrix.
combined.rainfall <-  matrix(c(rainfall1,rainfall2),nrow = 12)
# Convert it to a time series object.
rainfall.timeseries <- ts(combined.rainfall,start = c(2012,1),frequency = 12)
# Print the timeseries data.
print(rainfall.timeseries)
# Give the chart file a name.
png(file = "rainfall_combined.png")
# Plot a graph of the time series.
plot(rainfall.timeseries, main = "Multiple Time Series")
# Save the file.
dev.off()
Output:
         Series 1 Series 2
Jan 2012    799.0    655.0
Feb 2012   1174.8   1306.9
Mar 2012    865.1   1323.4
Apr 2012   1334.6   1172.2
May 2012    635.4    562.2
Jun 2012    918.5    824.0
Jul 2012    685.5    822.4
Aug 2012    998.6   1265.5
Sep 2012    784.2    799.6
Oct 2012    985.0   1105.6
Nov 2012    882.8   1106.7
Dec 2012   1071.0   1337.8
The Multiple Time series chart −

Spatial Data Analysis using R
Download the data set IND_adm1.rds from github
Make this data set available in current working directory. (IND_adm1.rds)
library(rjson)
library(ggmap)
library(RgoogleMaps)
library(png)
library(sp)
library(RColorBrewer)
gadm <- readRDS("IND_adm1.rds", refhook = NULL)
ind1 = gadm
ind1
spplot(ind1, "NAME_1", scales=list(draw=T), colorkey=F, main="India")
ind1$NAME_1 = as.factor(ind1$NAME_1)
ind1$fake.data = runif(length(ind1$NAME_1))
spplot(ind1,"NAME_1",  col.regions=rgb(0,ind1$fake.data,0), colorkey=T,   main="Indian States")
Output:



#Tamil Nadu
TN=ind1[ind1$NAME_1=="Tamil Nadu",]
spplot(TN,"NAME_1", col.regions=rgb(0,0,1), main = "Tamil Nadu, 
       India",scales=list(draw=T), colorkey =F)
Output:

#Telangana
TS=ind1[ind1$NAME_1=="Telangana",]
spplot(TS,"NAME_1", col.regions=rgb(0,0,1), main = "Telangana, 
       India",scales=list(draw=T), colorkey =F)
Output:

#Adhra Pradesh
AP=ind1[ind1$NAME_1=="Andhra Pradesh",]
spplot(TS,"NAME_1", col.regions=rgb(0,0,1), main = "Andhra Pradesh,
India",scales=list(draw=T), colorkey =F)
Output:

#Districts of TamilNadu
ind2=readRDS("IND_adm2.rds")
TN_districts = (ind2[ind2$NAME_1=="Tamil Nadu",])
TN_districts$NAME_2=as.factor(TN_districts$NAME_2)
col = rainbow(length(levels(TN_districts$NAME_2)))
spplot(TN_districts,"NAME_2", main="The Districts of TamilNadu",col.regions=col, colorkey=T)



Output:

#Districts of Andhra Pradesh
AP_districts = (ind2[ind2$NAME_1=="Andhra Pradesh",])
AP_districts$NAME_2=as.factor(AP_districts$NAME_2)
col = rainbow(length(levels(AP_districts$NAME_2)))
spplot(AP_districts,"NAME_2",main="The Districts of Andhra Pradesh",
col.regions=col, colorkey=T)
Output:

#Districts of Telangana
TS_districts = (ind2[ind2$NAME_1=="Telangana",])
TS_districts$NAME_2=as.factor(TS_districts$NAME_2)
col = rainbow(length(levels(TS_districts$NAME_2)))
spplot(TS_districts,"NAME_2", main="The Districts of Telangana", col.regions=col, colorkey=T)
Output:

#Taluk,District-TamilNadu
ind3=readRDS("IND_adm3.rds")
TN_TALUKS=ind3[ind3$NAME_1=='Tamil Nadu',]
TN_TALUKS$NAME_3<-as.factor(TN_TALUKS$NAME_3)
col1=rainbow(length(levels(TN_TALUKS$NAME_3)))
spplot(TN_TALUKS,"NAME_3",main = "Taluk, District - TN", 
       colorkey=T,col.regions=col,scales=list(draw=T))
Output:



#Taluk,District-Andhra Pradesh
AP_TALUKS=ind3[ind3$NAME_1=='Andhra Pradesh',]
AP_TALUKS$NAME_3<-as.factor(AP_TALUKS$NAME_3)
col1=rainbow(length(levels(AP_TALUKS$NAME_3)))
spplot(AP_TALUKS,"NAME_3",main = "Taluk, District - AP", 
       colorkey=T,col.regions=col,scales=list(draw=T))
Output:

Network Data Analysis using R
#Social Network Analysis
#Load the library igraph
library(igraph)
#Create a simple graph
g <- graph(c(1,2))
#Plot the graph
plot(g)
Output:
#Social Network Analysis
#Load the library igraph
library(igraph)
#Create a simple graph
g <- graph(c(1,2))
#Plot the graph
#plot(g)
#For node or vertex,if you want different color rather than default
#Modify the size
#we can choose different color for edge
plot(g,vertex.color="green",vertex.size=40,edge.color='red')
#After nodes 1 to 2, we can add other nodes also

library(igraph)
g <- graph(c(1,2,2,3,3,4,4,1),directed=F,n=7)
plot(g,vertex.color="green",vertex.size=40,edge.color='red')
# we can see the connection between edges



g[]
# Now we can have 4 nodes
# if the arrow is growing from one node to another it is called directed graph
#we can add the number of nodes also in the graph
# Here we will take another graph with string objects
# If we make directed = false
library(igraph)
g1 <- graph(c("Amy","Ram","Ram","Li","Li","Amy","Amy","Li","Kate","Li"),directed=F)
#then use the plot
plot(g1,vertex.color="green",vertex.size=40,edge.color='red')
g1
#Network Measures
#one such measure is degree
#degree means number of connections
#we can also get the information by setting mode=all
library(igraph)
g1 <- graph(c("Amy","Ram","Ram","Li","Li","Amy","Amy","Li","Kate","Li"),directed=T)
#then use the plot
plot(g1,vertex.color="green",vertex.size=40,edge.color='red')
g1
degree(g1,mode='all')
degree(g1,mode='in')
degree(g1,mode='out')
# we can get the diameter of the netwrok
diameter(g1,directed=F, weights=NA)
# we can calculate the density
edge_density(g1,loops=F)
ecount(g1)/(vcount(g1)*(vcount(g1)-1))
# we have 5 edges and 4 vertexs
# reciprocity and closeness
reciprocity(g1)
closeness(g1,mode='all', weights=NA)
# we can calculate betweenness
betweenness(g1,directed=T,weights=NA)
edge_betweenness(g1,directed=T,weight=NA)

10(b) Data Transformations: Converting Numeric Variables into Factors, Date Operations,
String Parsing, Geocoding.
Converting Numeric Variables into Factors
Factors are used to represent categorical data. Factors can be ordered or unordered and are an 
important class for statistical analysis and for plotting.
Factors are stored as integers, and have labels associated with these unique integers. While factors 
look (and often behave) like character vectors, they are actually integers under the hood, and you 
need to be careful when treating them like strings.
Once created, factors can only contain a pre-defined set value, known as levels. By default, R 
always sorts levels in alphabetical order. For instance, if you have a factor with 2 levels:

The factor() Command
The factor() command is used to create and modify factors in R:

sex <- factor(c("male", "female", "female", "male"))
R will assign 1 to the level "female" and 2 to the level "male" (because f comes before m, even 
though the first element in this vector is "male"). You can check this by using the function levels(), 
and check the number of levels using nlevels():
levels(sex)
[1] "female" "male"  
nlevels(sex)



[1] 2
Sometimes, the order of the factors does not matter, other times you might want to specify the order 
because it is meaningful (e.g., “low”, “medium”, “high”) or it is required by particular type of 
analysis. Additionally, specifying the order of the levels allows us to compare levels:
food <- factor(c("low", "high", "medium", "high", "low", "medium", "high"))
levels(food)
[1] "high"   "low"    "medium"
food <- factor(food, levels = c("low", "medium", "high"))
levels(food)
[1] "low"    "medium" "high"  

food <- factor(food, levels = c("low", "medium", "high"), ordered = TRUE)
levels(food)
[1] "low"    "medium" "high"  
min(food) # works!
[1] low
Levels: low < medium < high

Note:
In R’s memory, these factors are represented by numbers (1, 2, 3). They are better than using 
simple integer labels because factors are self-describing: "low", "medium", and "high"” is more 
descriptive than 1, 2, 3. Which is low? You wouldn’t be able to tell with just integer data. Factors 
have this information built in. It is particularly helpful when there are many levels (like the subjects 
in our example data set).

What is Factor in R?
Factor in R is a variable used to categorize and store the data, having a limited number of different 
values. It stores the data as a vector of integer values. Factor in R is also known as a categorical 
variable that stores both string and integer data values as levels. Factor is mostly used in Statistical 
Modeling and exploratory data analysis with R.
In a dataset, we can distinguish two types of variables: categorical and continuous.

 In descriptive statistics for categorical variables in R, the value is limited and usually based 
on a particular finite group. For example, a categorical variable in R can be countries, year, 
gender, occupation.

 A continuous variable, however, can take any values, from integer to decimal. For example, 
we can have the revenue, price of a share, etc..

Categorical Variables
Categorical variables in R are stored into a factor. Let’s check the code below to convert a character 
variable into a factor variable in R. Characters are not supported in machine learning algorithm, and 
the only way is to convert a string to an integer.
Syntax
factor(x = character(), levels, labels = levels, ordered = is.ordered(x))
Arguments:

 x: A vector of categorical data in R. Need to be a string or integer, not decimal.
 Levels: A vector of possible values taken by x. This argument is optional. The default value 

is the unique list of items of the vector x.
 Labels: Add a label to the x categorical data in R. For example, 1 can take the label `male` 

while 0, the label `female`.
 ordered: Determine if the levels should be ordered in categorical data in R.

# Create gender vector
gender_vector <- c("Male", "Female", "Female", "Male", "Male")
class(gender_vector)
# Convert gender_vector to a factor
factor_gender_vector <-factor(gender_vector)



class(factor_gender_vector)
Output:
## [1] "character"
## [1] "factor"

A categorical variable in R can be divided into nominal categorical variable and ordinal 
categorical variable.
Nominal Categorical Variable
A categorical variable has several values but the order does not matter. For instance, male or 
female. Categorical variables in R does not have ordering.
# Create a color vector
color_vector <- c('blue', 'red', 'green', 'white', 'black', 'yellow')
# Convert the vector to factor
factor_color <- factor(color_vector)
factor_color
Output:
## [1] blue   red green white black yellow
## Levels: black blue green red white yellow

From the factor_color, we can’t tell any order.

Ordinal Categorical Variable
Ordinal categorical variables do have a natural ordering. We can specify the order, from the lowest 
to the highest with order = TRUE and highest to lowest with order = FALSE.
Example:
We can use summary to count the values for each factor variable in R.
# Create Ordinal categorical vector 
day_vector <- c('evening', 'morning', 'afternoon', 'midday', 'midnight', 'evening')
# Convert `day_vector` to a factor with ordered level
factor_day <- factor (day_vector, order = TRUE, levels =c('morning', 'midday', 'afternoon', 
'evening', 'midnight'))
# Print the new variable
factor_day
Output:
## [1] evening   morning   afternoon midday midnight  evening

Example:
## Levels: morning < midday < afternoon < evening < midnight
# Append the line to above code
# Count the number of occurence of each level
summary(factor_day)
Output:
##   morning    midday afternoon   evening  midnight
##         1         1         1         2         1

R ordered the level from ‘morning’ to ‘midnight’ as specified in the levels parenthesis.
Continuous Variables
Continuous class variables are the default value in R. They are stored as numeric or integer. We can 
see it from the dataset below. mtcars is a built-in dataset. It gathers information on different types 
of car. We can import it by using mtcars and check the class of the variable mpg, mile per gallon. It 
returns a numeric value, indicating a continuous variable.
dataset <- mtcars
class(dataset$mpg)
Output
## [1] "numeric"



Date Operations
Dates are essential when you are dealing with the real-world data problems. Time will also be a 
component to look after while working on such data problems in real life. It is sometimes a tough 
job to deal with dates and times as there are various formats for the same as well as there are 
different time-zones across the globe. However, working with dates and times in R is extremely 
easy due to a variety of functions that allow you a smooth working over the same. In this article, 
we are going to see how to deal with the dates and times in R programming.
The as.Date() Function
 The most basic function we use while dealing with the dates is as.Date() function. This function 
allows us to create a date value (without time) in R programming. It allows the various input 
formats of the date value as well through the format = argument.
See an example below for the as.Date() function
#as.Date()function in R
dv <- as.Date("2012-05-28")
#standard date format for as.Date() is "YYYY-MM-DD"
print(dv)
Output:
[1] "2012-05-28"
Now, when we don’t have input value in a standard date format, we still can use the as.Date() 
function to create a dates value. See an example below:
dv1 <- as.Date("01/22/2015",format='%m/%d/%y')
print(dv1)
Output:
[1] "2020-01-22"
In this example, if you could see, the input date value is ”01/22/2015”,  which is not the standard 
date format. However, we have format = argument under the function, which allows it to arrange 
the date values in a standard form and present it to us.
%d -  means a day of the month in number format
%m - stands for the month in number format
%Y - stands for the year in the “YYYY” format. If we have the year value in two digits, we will use 
the  “%y” instead of “%Y.” See an example below:
dv1 <- as.Date("01/22/15",format='%m/%d/%y')
print(dv1)
Output:
[1] "2015-01-22"
When we have a month name instead of month number under the input value, we can use the %B 
operator under the format = argument while using the as.Date() function.
#example-3
dv2<-as.Date("15 April,2020",format='%d %B,%Y')
print(dv2)
Output:
[1] "2020-04-15"

Getting the Current Date and Time for System
Using the Sys.Date(), Sys.time() Function
 In R programming, if you use Sys.Date() function, it will give you the system date. You 

don’t need to add an argument inside the parentheses to this function. 
 There is again a function named Sys.timezone() that allows us to get the timezone based on 

the location at which the user is running the code on the system. 
 And finally, we have the Sys.time() function. Which, if used, will return the current date as 

well as the time of the system with the timezone details.
#To get the Current Date and Time
Sys.Date()#Current system Date
Output:



[1] "2022-01-30"
Sys.timezone() #Timezone of the system
Output:
[1] "Asia/Calcutta"
Sys.time() #Current System Time
Output:
[1] "2022-01-30 17:04:11 IST"
Using the lubridate Package
Well, there is a package named lubridate, which has a function named now() that can give us the 
current date, current time, and the current timezone details in a single call (same as the Sys.time() 
function).
#The lubridate package
install.packages("lubridate")
library(lubridate)
now()
Output:
[1] "2022-01-30 17:11:37 IST"

String Parsing
Convert a String to an Expression in R Programming – parse() Function
parse() function in R Language is used to convert an object of character class to an object of 
expression class.
Syntax: 
parse(text = character)
Parameters:
character: Object of character class
Example 1:
# R program to convert
# character to expression
# Creating an object of character class
x <- "sin(pi / 2)"
# Class of object
class(x)
# Calling parse() Function
x1 <- parse(text = x)
# Class of parsed object
class(x1)
Output:
[1] "character"
[1] "expression"

Example 2:
# R program to convert
# character to expression
# Creating an object of character class
x <- "2 ^ 3"
# Evaluating the value of object
eval(x)
# Calling parse() Function
x1 <- parse(text = x)
# Evaluating the value of object
eval(x1)
Output:
[1] "2 ^ 3"
[1] 8
Split up a string into pieces



Usage
str_split(string, pattern, n = Inf, simplify = FALSE)
str_split_fixed(string, pattern, n)
str_split_n(string, pattern, n)
Arguments
string

Input vector. Either a character vector, or something coercible to one.
pattern

Pattern to look for.
n

number of pieces to return. Default (Inf) uses all possible split positions.
simplify

If FALSE, the default, returns a list of character vectors. If TRUE returns a character matrix.
Value
For str_split_fixed, a character matrix with n columns. For str_split, a list of character vectors. 
For str_split_n, a length n character vector.
Example:
install.packages("stringr")
library(stringr)
fruits <- c(  "apples and oranges and pears and bananas", "pineapples and mangos and guavas")
str_split(fruits, " and ")
Output:
[[1]]
[1] "apples"  "oranges" "pears"   "bananas"
[[2]]
[1] "pineapples" "mangos"     "guavas"   
str_split(fruits, " and ", simplify = TRUE)
Output:
[,1]         [,2]      [,3]     [,4]     
[1,] "apples"     "oranges" "pears"  "bananas"
[2,] "pineapples" "mangos"  "guavas" ""       
 # Specify n to restrict the number of possible matches
str_split(fruits, " and ", n = 3)
Output:
[[1]]
[1] "apples"            "oranges"           "pears and bananas"
[[2]]
[1] "pineapples" "mangos"     "guavas"    
str_split(fruits, " and ", n = 2)

Output:
[[1]]
[1] "apples"                        "oranges and pears and bananas"
[[2]]
[1] "pineapples"        "mangos and guavas"
# If n greater than number of pieces, no padding occurs
str_split(fruits, " and ", n = 5)
Output:
[[1]]
[1] "apples"  "oranges" "pears"   "bananas"

[[2]]
[1] "pineapples" "mangos"     "guavas"  
# Use fixed to return a character matrix
str_split_fixed(fruits, " and ", 3)



Output:
     [,1]         [,2]      [,3]               
[1,] "apples"     "oranges" "pears and bananas"
[2,] "pineapples" "mangos"  "guavas"  
str_split_fixed(fruits, " and ", 4)
Output:
     [,1]         [,2]      [,3]     [,4]     
[1,] "apples"     "oranges" "pears"  "bananas"
[2,] "pineapples" "mangos"  "guavas" ""  

VIVA QUESTIONS
1. How to implement R Pie Charts?
The Pie charts are created with the help of pie () function, which takes positive numbers 
as vector input. Additional parameters are used to control labels, colors, titles, etc.
There is the following syntax of the pie() function:
  pie(X, Labels, Radius, Main, Col, Clockwise)  

2. How to implement R Bar Chart?
In R, we can create a bar chart to visualize the data in an efficient manner. For this 
purpose, R provides the barplot() function, which has the following syntax:
barplot(h,x,y,main, names.arg,col)  

S.No Parameter Description
1. H A vector or matrix which contains numeric values used in the bar 

chart.
2. xlab A label for the x-axis.
3. ylab A label for the y-axis.
4. main A title of the bar chart.
5. names.arg A vector of names that appear under each bar.
6. col It is used to give colors to the bars in the graph.

3. What is meant by Bar Chart in R?
A bar chart is a pictorial representation in which numerical values of variables are 
represented by length or height of lines or rectangles of equal width. A bar chart is used 
for summarizing a set of categorical data. In bar chart, the data is shown through 
rectangular bars having the length of the bar proportional to the value of the variable.

4. What does summary () do in R?
A very useful multipurpose function in R is summary(X), where X can be one of any 
number of objects, including datasets, variables, and linear models, just to name a few. 
When used, the command provides summary data related to the individual object that was 
fed into it.

5. What Is Variance?
The variance is the average of the squared differences from the mean. To figure out the 
variance, first calculate the difference between each point and the mean; then, square 
and average the results.


